

DCREC

NOVEMBER 2014

Allocating Real Estate Assets to Retirement Portfolios

FIRST PUBLISHED OCTOBER 2014

Published by:

DCREC - Defined Contribution Real Estate Council, 38 E. Ridgewood Avenue, Suite 229, Ridgewood, NJ 07450.

DCREC

DCREC's members include investors, investment managers, accountants, attorneys, record-keepers and other individuals and businesses who believe that investment in real estate is essential to provide American workers a financially secure retirement. In meeting its mission of attracting investment of worker retirement assets in real estate and real estate securities, including REITS, DCREC is guided by the following operating principles and values:

Serving the best interests of the industry;
Respect for confidentiality;
Robust, open and candid debate;
Willingness to challenge convention and seek creative and innovative solutions; and
Accountability.

CITATION

Drew, M., Walk, A. and West, J., 2014, A path to better retirement outcomes: Allocating real estate assets to retirement portfolios, DCREC (Defined Contribution Real Estate Council), Ridgewood, NJ.

AVAILABILITY

This report is available on the DCREC website (http://www.dcrec.org/).

DISCLAIMER

The material in this research survey does not constitute legal, accounting or other professional advice. While all reasonable care has been taken in its preparation, DCREC does not make any express or implied representations or warranties as to the completeness, reliability or accuracy of any and all material in this research report. The research report should not be used or relied upon as a substitute for professional advice or as a basis for formulating business decisions. To the extent permitted by law, DCREC excludes all liability for any loss or damage arising out of the use of the material in the research report. Any links to third party websites are provided for convenience only and do not represent endorsement, sponsorship or approval of those third parties or any products and services offered.

© Defined Contribution Real Estate Council 2014.

FURTHER INFORMATION AND COMMENTS

For more information, please contact DCREC via the Contact Us link at www.dcrec.org or email contact@dcrec.org

In this report, we test the investment case for real estate, as an asset class, to be included in defined contribution (DC) plans. We compare assets allocations with exposure to real estate against traditional equity/fixed income asset allocation strategies. We find that allocating to both listed and unlisted real estate assets in retirement portfolios can enhance the risk-return profile of DC investment designs and improve the probability of successfully achieving desired retirement outcomes.

Employing a simulation approach using historical data, we test a range of DC-style asset allocations (including target date and target risk funds) that include an allocation to both listed and unlisted real estate versus comparable designs without real estate. We find that portfolios with a relatively modest allocation (i.e., 10%) to a real estate blend achieve similar expected outcomes (and in some cases better results) with less tail risk and volatility than a conventional portfolio without such a real estate allocation.

Based on this evidence, we recommend that DC plan sponsors give strong consideration to allocating to listed and unlisted real estate investments when DC plan performance is evaluated using outcomeoriented measures of success.

TABLE OF CONTENTS

SECTION		PAGE
	Executive Summary	2
	Table of Contents	3
1	Introduction	4
2	Motivation	5
3	Data and Methodology	8
3.1	Asset Allocation Strategies	13
3.2	Retirement Risk Measures	16
4	Results	18
5	Conclusion	31
6	Reference List	32
7	Appendix	35
8	Contact Details	44

1 | INTRODUCTION 4

The principal motivations for adding real estate investments to retirement portfolios during the accumulation phase in defined contribution plans include:

DIVERSIFICATION AND
REDUCTION OF OVERALL
PORTFOLIO RISK

A HEDGE AGAINST INFLATION

RELATIVELY STABLE CASH FLOWS TO THE PORTFOLIO IN THE FORM OF RENTAL INCOME

Exposure to real estate investments can be achieved in a number of ways, depending on the degree of separation between the investor and these types of assets. Pension funds can gain direct exposure to properties or indirect exposure through listed property vehicles (such as real estate investment trusts, or REITs). Increasingly, defined contribution plans in the U.S. are looking to invest in unlisted real estate assets for at least part of their portfolio, as shown in Andonov et al. (2013). While investment in private, or unlisted real estate has a long heritage in defined benefit type plans, it remains a puzzle as to why there has been very little adoption by DC plans.

Listed real estate securities, represented by REITs, provide an easily implemented exposure to real estate and are generally preferred by DC plans because they are administratively simple due to their liquidity and valuation cycles that mirror stocks and bonds. Even relatively small investors can acquire a well-diversified global property exposure through listed property securities. Unlisted real estate, in contrast, is typically more complex and requires more intensive management, especially when investments are executed internationally. Thus, private, direct real estate is generally a preferred option for larger funds with more assets to invest. In the context of DC plans, there are a number of operational considerations – expectations for daily valuations and liquidity in particular – which appear, at first glance, to limit more significant allocations to unlisted real estate.

Andonov et al. (2013) highlights the integral role that real estate plays in institutional portfolios globally. It is the third-largest asset class for institutional investors and the most prominent alternative class. In a mean–variance framework, Hudson-Wilson et al. (2005) show that real estate investments achieve the majority of investors' expectations¹. However, in reality, questions concerning the role of real estate within DC plans remain. In addition to the valuation and liquidity considerations mentioned previously, in some jurisdictions, common practices may also act as a constraint to allocations to non-traditional asset classes, including real estate.²

While the virtues of investing in real estate are well known, the process for optimizing and allocating a portion of a DC plan's portfolio to real estate assets is less so. In an environment where DC plan asset allocations are subject to more scrutiny (particularly post the Global Financial Crisis, or GFC), this study considers the role of both listed and unlisted real estate for a range of extant DC portfolio designs. In contrast to the usual way in which DC plans are evaluated (typically, time-weighted measures of success), we consider performance from the perspective of the plan participant by reporting outcome-oriented measures of success.³ In practical terms, we consider the role of real estate in a range of asset allocation approaches common to DC plans (balanced and target date) using a selection of performance and risk measures (e.g. conditional value-at-risk, or CVaR).

³ For further discussion on time-versus wealth-denominated performance measures, see Bianchi, Drew, Evans and Walk (2014).

¹ Brounen et al. (2010) and Chun et al. (2000) found contrary outcomes when accounting for pension fund liability obligations.

² For example, in Australia, default offerings tend to have similar asset allocations. Significantly different allocations to asset classes like real estate would generally be unusual because of the perceived business risk (i.e. potential fund outflows) associated with having worse returns than the peer group.

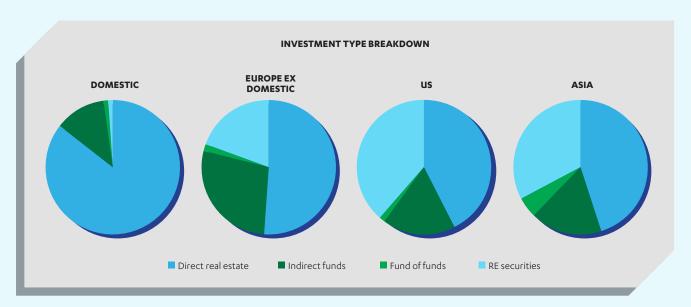
2 | MOTIVATION 5

At present, the US pension system is the largest in the world with around \$19 trillion in assets (or 113% of GDP): of this, the proportion of DC plan assets is estimated to be 58% and growing (Towers Watson, 2014). This momentum shift in the US pension system from defined benefit (DB) to DC plans has focused attention on the ability (or otherwise) of current DC plans and their investment designs to meet the retirement income goals of plan participants. One of the many lessons from the GFC has been the critical role of the sequence of returns (or path dependency) experienced by plan participants late in their accumulation phase and early in the retirement phase. This experience has driven innovation in asset allocation strategies (how to structure the portfolio?) and asset selection strategies (which assets to choose?) within DC plans. Furthermore, it has illustrated the dangers of measuring success in retirement portfolios simply as the mean and standard deviation of time-weighted returns.

So what do current plan portfolios look like? In general terms, US pension fund asset allocations remain dominated by investments in stocks and bonds. However, there has been substantial growth in alternative assets in the past decade. In 2009, stocks, bonds, and cash accounted for 47.1%, 36.9%, and 2.5% of retirement fund portfolios respectively, while the remaining 13.5% of the portfolio was invested in alternative assets. Real estate is the most common alternative asset class included, with an average allocation of 5.1% in 2009, followed by private equity (3.6%), hedge funds (2.9%), and other alternative assets (1.8%) (Andonov et al., 2013). In practice, the majority of pension funds invest in some form of real estate. Pension funds in the United States are about as likely as the global average to invest in real estate, while Canada's funds have historically been less likely to invest in real estate assets. Funds in Australia, New Zealand and especially Europe⁶ typically have higher allocations to real estate (Andonov et al., 2013) (see Exhibit A).

⁶ Over 95% of the European pension funds invest in real estate.

⁴ It is also important to note that there is only one other major pension market that is more DC dominated than the US, namely Australia, where DC assets comprise 84% of the total (Towers Watson, 2014).


⁵ The numbers cited in Andonov et al. (2013) are thought to cover all pension funds (i.e. both DC and DB plan types).

2 | MOTIVATION 6

Exhibit A – European pension fund real estate investment

To illustrate the approach of European pension funds to investing in real estate, we briefly discuss the first European Institutional Real Estate Survey conducted by IPE, which covers 83 pension funds, and accounts for more than €100 billion (\$US 136 billion) in property investments and total assets of €1.29 trillion (\$US 1.76 trillion) (IPE International Publishers Ltd, 2013).

Figure A outlines the ways that European pension funds gain their real estate exposures by the location of that exposure. Particularly noteworthy is the dominance of private, unlisted real estate as the vehicle of choice among survey respondents with almost 99 percent of domestic (i.e. home country) investment, and around 80% of Europe ex domestic investments. The differences between home country and non-home country allocations are consistent with expectations: investors are typically more comfortable making direct (unlisted) investments in real estate where they understand the legal and business environment they face. When investors venture out of their home country, more prefer to invest in real estate securities where transparency and disclosure standards are (arguably) higher by virtue of being listed. For example, while unlisted real estate exposures to the US and Asia still comprise the majority, the proportions allocated to real estate securities in these two geographies are the highest among all exposures with between 30 and 40 percent allocations.

Figure A: Investment type breakdown by domestic and other European but non-domestic investments.

The survey notes that most investors use listed exposures for one or more of the following reasons: diversification, liquidity or to access niche asset sub-classes (IPE International Publishers Ltd, 2013, p. 5). The report hints that the popularity of listed real estate may also be related to the supply of assets, highlighting that the US has a "significant REIT market" that comprises "around half of the [total global] listed market" (IPE International Publishers Ltd, 2013, p. 5).

While European pension funds already appear comfortable with real estate investing, there are signs that further increases in allocations are likely. Despite reporting relatively stable allocations, the biggest grouping of respondents intends to "maintain or increase its real estate allocation by up to 2% over the next two years" (IPE International Publishers Ltd, 2013, p. 2). The next largest grouping plans to increase its allocations further by 3–5%.

2 | MOTIVATION 7

Institutional investment in listed real estate is relatively uncontroversial, as it takes the form of listed securities in a company (and/or trust). Existing allocations are implemented explicitly through allocations to REITs and/or implicitly through exposure to broad stock indexes which typically incorporate REITs to some extent. DC plans' investment in private, unlisted real estate is yet to match the exposure of their DB counterparts, despite the increasing attractiveness of "stable, income-producing investments" (IPE International Publishers Ltd, 2013, p. 2). The natural question is: why not?

Notwithstanding some of the practical issues involved in implementing allocations to private, unlisted real estate in DC plans, we are motivated here to test the investment case. The remainder of the study is organized as follows:

Section 3 outlines the data and methodology employed. We take a bootstrap simulation approach using historical data to test for a range of asset allocations both with and without an allocation to a blend of unlisted and listed real estate. The results of the study are presented in both tabular and heat map forms.

Section 4 highlights results by asset allocation and performance and risk measures. We show that by adding a blend of listed and unlisted real estate to a traditional DC plan design, the plan sponsor can improve the risk characteristics of a portfolio without affecting performance and in some instances enhancing portfolio outcomes.

Concluding remarks are provided in **Section 5**.

⁷ We noted earlier that there are at least two known barriers to further institutional investment in unlisted real estate, namely valuations and liquidity. We discuss these matters in Exhibit F.

Data covers the period from January 1978 to January 2014. A range of indices were used to serve as a proxy for the traditional asset classes. The S&P 500 return series is used to represent US stocks while the MSCI ACWI (All Country World Index – excluding the U.S.)⁸ is used to represent foreign stocks. US bonds are represented by the Barclays US Aggregate°, the Barclays Global Aggregate¹º is used to represent foreign bond data and the 3-month US Treasury Bill yields are used to represent US cash returns. The FTSE NAREIT U.S. Real Estate Series¹¹ is used as a proxy for listed US real estate investment returns while an NFI-ODCE Value Weighted Index is used to represent unlisted real estate investment returns.¹²

The summary statistics for the data are reported in Table 1, and Exhibit B provides a technical commentary of these statistics and what they mean for the methodology employed herein. Listed real estate offers higher returns and risk than large-cap stocks (listed real estate is less volatile than mid-cap and small-cap stocks). In contrast, private unlisted real estate (core equity strategy) has returns closer to those of bonds but with significantly lower (reported) risk than stocks. In deciding how to incorporate the blend of real estate into the asset allocation strategies examined herein, we used these estimates to justify taking equivalent allocations from stocks and bonds. In very general terms, unlisted, core real estate could be argued to be a reasonable replacement for bonds because of its regular income, low (reported) volatility and low correlation to listed markets (see Table 2). Furthermore, some would argue that some types of unlisted real estate have inflation hedging characteristics (i.e. retail properties) making the asset class a reasonable defensive asset from the perspective of a liability-driven investor (IPE International Publishers Ltd, 2013, pp. 13-14). Listed real estate is traded on stock exchanges and included in broad stock indices and therefore taking from the stock allocation for this element of the real estate blend is defensible. An equally weighted portfolio of listed and unlisted real estate would have experienced annualized returns of 11.63% and volatility of 9.21%, which takes advantage of the low measured correlation of 0.15 between listed and unlisted real estate observed since 1978. These outcomes, however, ignore the performance of real estate during various economic conditions (such as contractionary and expansionary monetary cycles) and the important correlation benefits provided to long term investors.

	us sтоскs	FOREIGN STOCKS	US BONDS	FOREIGN BONDS	US CASH	REAL ESTATE (LISTED)	REAL ESTATE (UNLISTED)
Mean	12.52%	8.21%	7.87%	6.64%	5.07%	13.90%	8.38%
St Dev	15.82%	18.90%	6.59%	6.11%	1.79%	17.72%	5.53%
Skew	-0.90	-0.63	0.93	0.25	0.55	-1.76	-3.07
Kurt	1.57	0.89	5.06	-0.69	0.10	9.46	13.47
JB-Stat	34	10	174	3	7	611	1,315
P-value	0.00	0.01	0.00	0.23	0.02	0.00	0.00
n	144	104	144	96	144	144	144
Max	21.35%	27.94%	18.78%	8.93%	3.81%	33.28%	6.44%
Min	-22.53%	-22.29%	-8.71%	-3.83%	0.00%	-38.80%	-13.69%

Table 1: Summary statistics for quarterly gross returns of US stocks, foreign stocks, US bonds, foreign bonds, 3-month T-bills and listed and unlisted real estate, January 1978 – January 2014. Refer to Exhibit B for a discussion of these summary statistics.¹³

¹³Consistent with common practice the summary statistics reported in Table 1 are gross returns. In the analysis returns net of actual fees have been used.

⁸ The MSCI ACWI (All Country World Index – excluding the U.S.) index is a free float-adjusted market capitalization weighted index that is designed to measure the equity market performance of developed and emerging markets excluding the U.S. As of November 2008 the MSCI ACWI consisted of 46 country indices comprising 23 developed and 23 emerging market country indices. The developed market country indices included are: Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Greece, Hong Kong, Ireland, Israel, Italy, Japan, Netherlands, New Zealand, Norway, Portugal, Singapore, Spain, Sweden, Switzerland, and the United Kingdom. The emerging market country indices included are: Argentina, Brazil, Chile, China, Colombia, Czech Republic, Egypt, Hungary, India, Indonesia, Korea, Malaysia, Mexico, Morocco, Pakistan, Peru, Philippines, Poland, Russia, South Africa, Taiwan, Thailand, and Turkey.

⁹ The Barclays US Aggregate index covers the U.S. investment grade fixed rate bond market, with index components including treasuries, government-related & corporate securities, MBS pass-through securities, ABS, CMBS securities; must be at least one year to final maturity (ABS > remaining average life of 1 year), must be rated investment grade or better, and must be publically issued securities although 144A securities with registration rights are included. These major sectors are subdivided into more specific indices that are calculated and reported on a regular basis. The lower limit of par outstanding is \$250 million.

¹⁰ The Barclays Global Aggregate index provides a broad-based measure of the global investment-grade fixed-rate debt markets. The three major components are the U.S. Aggregate Index, the Pan-European Aggregate Index, and the Asian-Pacific Aggregate Index. The index also includes Global Treasury, Eurodollar, Euro-Yen, Canadian, and Investment-Grade 144A index-eligible securities not already in the three regional aggregate indices.

[&]quot;The FTSE NAREIT US Real Estate Index Series is designed to present investors with a comprehensive family of REIT performance indexes that span the commercial real estate space across the US economy, offering exposure to all investment and property sectors. In addition, the more narrowly focused property sector and sub-sector indexes provide the facility to concentrate commercial real estate exposure in more selected markets.

 $^{^{12}}$ The NFI-ODCE Value Weighted Index is measured on a quarterly basis.

Exhibit B – Summary statistics and their implications

Descriptive statistics for each of the seven time series were computed based on quarterly returns and reported in Table 1: annualized arithmetic mean return ("Mean"), annualized standard deviation ("St Dev"), skewness ("Skew"), kurtosis ("Kurt"), the calculated Jarque-Bera test statistic ("JB-Stat"), and the probability value associated with the Jarque-Bera statistic ("P-value"). The Jarque-Bera statistic is a widely-used statistical test for normality that summarises the combined effects of skewness and kurtosis in a single measure (Jarque and Bera, 1980; 1987). Under the null hypothesis the Jarque-Bera test statistic has a chi-square (2) distribution with two degrees of freedom. When the probability value ("P-value") is small, the null hypothesis of a normal distribution is rejected. For each time series — with the exception of foreign bonds — strong nonnormality is observed with very large Jarque-Bera statistics and correspondingly small P-values. This finding is generally consistent with our expectations, and with the literature relating to the statistical and distributional properties of financial returns (Mandelbrot, 1963, 1967; Fama, 1965).

The statistical characteristics of financial data have implications for the methodology employed herein. Scholars typically take one of two approaches in dealing with data in general, and the asset return process in particular. The first approach is to model a range of asset return processes, rather than assuming just one. Kritzman and Rich (1998), for example, study five different utility specifications (log, square root, power, quadratic and combination), and consider the implications for the optimal equity allocation over time assuming three different asset return processes (random walk, mean reversion and mean aversion). Many other studies follow similar approaches (Kritzman, 2000; Guo and Darnell, 2005; Fabozzi et al., 2006). So, rather than identifying the asset return process in the data in question and attempting to replicate it directly, advocates of this approach instead directly model a number of processes that have been identified in the finance literature.

The main alternative approach is to employ one or more simulation techniques that are capable of capturing the characteristics of the data being studied. Chief among these techniques are simulation methods. While simulation techniques first appear in the literature some time ago, the majority of studies employed either Monte Carlo (e.g. Fabozzi et al., 2006) or Efron (1979) style bootstrap methods (e.g. Hickman et al., 2001), which implicitly assume that the asset return process follows a random walk. It was not until later that researchers began employing block bootstrap methods; techniques that have the ability to capture the time series characteristics of returns. Bootstrapping involves setting up a data generating process (DGP) allowing researchers to make inferences from actual data. The bootstrap has been applied to a wide range of applications in finance, particularly in the area of portfolio construction.

This research employs the block bootstrap technique which began with the work of Künsch (1989). Whereas the Efron (1979) bootstrap selects a single row vector at random, the block bootstrap resamples "blocks" of successive data from the sample. By doing this, the method seeks to retain some of the serial dependence in the data while still achieving the underlying purpose of non-parametric simulation methods, which is the production of a number of synthetic time series. Each method - both Efron's (1979) and Künsch's (1989) - retain the correlation structure between the assets in the dataset. Ruis and Pascual (2002) point to the block bootstrap as a method that is designed to deal with the "dependent observations (p. 28)" common in financial data. The point here is that we are not making any claims about the time series properties of the data, we are merely selecting a quantitative technique that has been shown to handle the characteristics of financial data.

The central question in considering this last class of quantitative techniques is: What is the optimal block size? Politis and White (2004) point out that "... the optimal block size is never known in practice, and—more often than not—the block size used is

suboptimal (p. 57)." On this basis we select a block size based on our experience. We employ a block size of four (i.e. four quarters, or one year) in this analysis. It is important to note that the correlation between unlisted and listed real estate was found to be around 0.15 for the observation period (see Table 2). This correlation increases to 0.28 when unlisted RE was lagged by two quarters and then to 0.3 when lagged by four quarters. At face value, this suggests that a longer block size may be warranted for the simulation. However, the lagged association between time series will remain in the analysis when only four quarters are used and using longer blocks should theoretically make little difference to the results. To confirm our a priori expectations, we re-ran the simulation for a block size of six quarters and then eight quarters and observed no discernible difference in the results (i.e. the bootstrap results appear insensitive to block size so long as the block length is between two and 12 quarters).

	UNLISTED RE	LISTED RE	us sтоскs	US BONDS
UNLISTED RE	1.00			
LISTED RE	0.15*	1.00		
US STOCKS	0.10	0.61	1.00	
US BONDS	-0.12	0.21	0.14	1.00

Table 2: Correlation co-efficients for unlisted real estate, listed real estate, US stocks and US bonds of quarterly returns 1978 to 2014. [* Correlation between unlisted and listed real estate increases to around 0.3 at lags of between 2 and 4 quarters.]

As detailed in Exhibit B, to simulate the data we employ a block bootstrap simulation approach. The block bootstrap is the most efficient simulation approach when model residuals are correlated. Simple bootstrap methods, or other forms of residual resampling, will fail because they are unable to replicate the correlation in the data. The block bootstrap replicates the correlation by resampling blocks of data. We follow the block bootstrap process articulated in Künsch (1989). Based on experience in using the block bootstrap approach, we employ a block size of 12 months for these simulations (i.e. a block four quarters in length). The portfolio can be rebalanced, or remain static, after every contribution. If the portfolio is rebalanced it is rebalanced at quarter-end in accordance with the asset allocation settings for each scenario.

We define two hypothetical plan participants; a 25-year old worker with a commencing salary of \$40,000 and \$0 in retirement savings, and a 40-year old worker with a salary of \$53,835 and \$100,000 in retirement savings. Each worker experiences salary increases of 2 percent per year which synchronizes the salary level of each worker (the 25-year old worker's salary will be \$53,835 when he/she turns 40-years of age). Both workers contribute 8 percent per annum of their salary to a retirement plan portfolio on a continual basis throughout each working year. The income of each worker in their final year of work prior to retirement is thus \$88,322. We conduct the simulation for each worker using terminal portfolio values and the retirement wealth ratio (RWR) as a means for comparison (see Exhibit C). The RWR is the ratio of terminal wealth to final salary. We provide the Value at Risk (VaR), Conditional VaR (CVaR) and median results for both the terminal portfolio value (in dollar terms) and terminal RWR. Broadly, success is defined as a RWR equivalent to 12 times final salary. This is a seemingly arbitrary definition. However, it is based on research using various retiree datasets - including the University of Michigan Health and Retirement Study (HRS) - to safely permit adequate retirement income and account for the cost of inflation through retirement (Poterba, et al. 1998). We use RWR to define success because it is a tangible outcome-oriented measure, translatable into dollars, which all audiences can easily identify with.

¹⁴ To confirm, 8 per cent is assumed to be total contributions (i.e. employee plus employer).

Exhibit C – Retirement adequacy measures

The challenge with return- or dollar-based terminal wealth measures of performance is that neither is particularly informative for the investor in terms of what performance means to their spending power in retirement. Baker et al. (2005), for example, argue that defined contribution plans should be measured in terms of their ability to generate sufficient retirement income, and Booth and Yakoubov (2000) and Basu and Drew (2009, 2010) contend that a plan participant's expectations will somehow be related to their salary immediately prior to their retirement. Therefore, we adopt Basu and Drew's (2009, 2010) retirement wealth ratio (RWRT), which is calculated by dividing terminal wealth (WT) by income at retirement (i.e. at time T). The RWRT thus provides a way of relating terminal wealth to some benchmark for the plan participant's post-retirement expectations.

Another advantage of RWR is that it normalizes expectations across income groups. For example, a high income earner and a low income earner can both relate to a RWR of 12 times final salary because it allows for their different dollar expectations based on their respective incomes. Put another way, two individuals could be targeting the identical RWR but with wildly different levels of terminal wealth by virtue of the fact that their incomes are different.

Finally, an existing study relating to the role of real estate in DC investing – Esrig (2013) – uses a version of the RWR which is described therein as "ending value multiple of final year wages" (cf. Exhibits 5-6, p. 149, of that study). In this way, this measure has precedent in the literature relating to the central question of this study.

If we assume income is required for 30 years in retirement (n), and an interest rate (r) of 4 percent per annum, we can compute the replacement rate (RR) consistent with a RWR of 12 via an annuity equivalent value (AEV) calculation as follows,

$$AEV = \frac{r(W_T)}{1 - (1+r)^{-n}}$$

Let us assume that if final salary equals \$1 and terminal wealth = \$12 then the retirement wealth ratio at retirement RWRT = 12 times then,

$$AEV = \frac{0.04(12)}{1 - (1 + 0.04)^{-30}} = 0.69$$

$$RR_T = \frac{0.69}{1} = 69\%$$

The thresholds used in this study in RWR and RR terms are shown in section 3.2 below. The color coding that accompanies these thresholds is used in the heat maps reported later in this study.

To demonstrate the impact of adding real estate to a number of competing portfolio designs, we examine the performance of these designs both with and without the addition of a 50/50 blend of listed and unlisted real estate. To better understand the return dynamics of each investment class, Figure 1 provides a summary of the evolution of listed and unlisted real estate indices from 1978 to 2013. Listed real estate clearly outperforms unlisted real estate over the past 35 years, in part because of greater financial risk due to higher levels of leverage. However the Sharpe Ratio (SR) of each asset class is more similar than Figure 1 suggests (SR(listed) = 0.498 versus SR(unlisted) = 0.599). Based on this recent performance history, unlisted real estate may be viewed as a low-volatility/low-return alternative to listed real estate. Given the higher correlation between listed real estate and unlisted real estate when lagged by two to four quarters, Figure 1 could be plotted such that the lagged time series' align. However the granularity of the data does not materially change the structure of the graph.

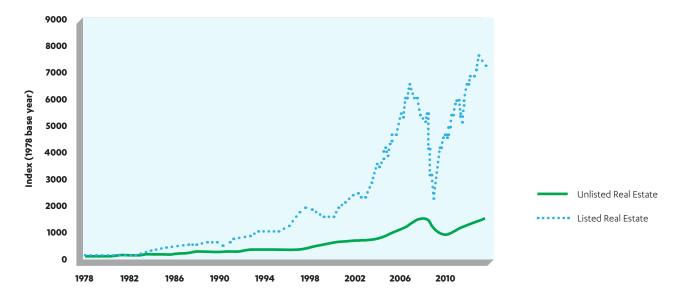


Figure 1: Listed vs unlisted real estate index profiles, 1978-2013 (index base 1978 = 100).

We now consider in detail the portfolio designs to be analyzed.

In selecting asset allocation strategies to analyze, we begin with the current institutional setting in the United States. What we set out to achieve is to select a small number of strategies to fairly represent the spectrum of asset allocation approaches available to DC plan participants (generally through existing DC menu options). To maximize the impact of this research, it would also be ideal if the strategies analyzed are also relevant to other DC-dominated pension systems like the United Kingdom and Australia.

The strategies examined in this research are as follows, along with the rationale for their selection:

100% Stocks;

100% Bonds;

100% Real Estate Blend (50% unlisted/ 50% listed);

Balanced (60% stocks/40% bonds);

Balanced with Real Estate Blend (55% stocks/35% bonds/10% real estate blend);

T Rowe Price Target Date Fund Glidepath¹⁵;

T Rowe Price Target Date Fund Glidepath with Real Estate Blend;

MarketGlide Benchmark Glidepath; and

MarketGlide Benchmark Glidepath with Real Estate Blend.

The principal reason for considering an all-stock portfolio in this study is the desire to have an immediate answer to the common refrain: How does that compare to the performance of 100% stocks? The all-stock portfolio in this context is a benchmark for a wealth maximizing, long horizon, investment approach advocated by scholars such as Siegel (1994). By modeling the all-stock portfolio beside more common DC plan portfolio options we can show approximations for the upper and lower limits of performance for unleveraged portfolios.

In the same way that the all stock-portfolio provides the outer limits of potential performance for an investment portfolio, the all bond portfolio gives an indication of the performance of a low-risk portfolio over the investment horizon in question. In this way, we provide a benchmark for all other risk-oriented portfolios and introduce a basis for performance evaluation. For example, having such a benchmark allows us to balance the upside benefits of growth-oriented portfolios against the opportunity cost of the same portfolio in poor equity market conditions.

The 100% Real Estate Blend has been included to consider the outcomes achieved by an investor devoting their entire retirement portfolio to real estate investments.

Target risk funds – like the 60/40 Balanced Fund – are designed to expose the DC plan participant to a particular static level of investment risk over the planned investment horizon. The level of risk is typically determined based on the investment objective of the fund. A higher objective would imply a greater allocation to risky assets (typically stocks), than a portfolio with a lower objective ceteris paribus. From a practical perspective, while the risk exposure for a target risk fund is constant by design, the underlying investments may change with time (McMurdy, 2009).¹⁶

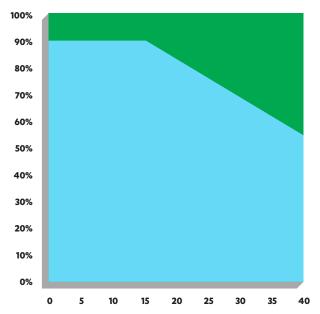
¹⁶ In the vernacular, asset allocation is constant, whereas asset selection may vary.

¹⁵ We acknowledge that there are a myriad of glidepath designs that could have been used in this study. The rationale in selecting the T Rowe Price glidepath was simply to act as a touchstone that many plan sponsors could relate to, as well as providing a simple way of operationalizing the analysis.

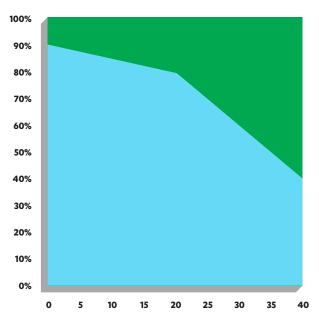
Target risk funds are widespread in jurisdictions where DC plans are predominant, for example, in the United States and in Australia, where they remain the cornerstone of superannuation fund offerings.¹⁷ Target risk funds are typically labeled in such a way that they clearly indicate to the participant what level of risk the fund targets. For example, funds may be labeled "conservative", "balanced" or "aggressive" in nature. Between jurisdictions, the risk exposure for a given descriptive label varies. In the United States, for example, a typical "balanced" fund is comprised of 60 percent growth assets and 40 percent defensive assets; a so-called "60/40 fund" (The Vanguard Group, 2014).¹⁸

To examine the marginal effect of adding real estate to a DC plan portfolio, we add a 10 percent allocation to a real estate blend (50/50 listed/unlisted) by taking 5 percent each from the stock and bond allocations. As discussed earlier, in deciding how to incorporate the real estate blend, we argue that private, core, unlisted real estate is a reasonable replacement for bonds because of its regular income, low (reported) volatility, low correlation to listed markets (see Tables 1 and 2) and its (arguable) inflation hedging characteristics. Listed real estate is traded on stock exchanges and included in broad stock indices. Therefore, taking from the stock allocation for this element of the real estate blend is reasonable. For each strategy where we add the real estate blend, the 10 percent allocation is held throughout the investment horizon.

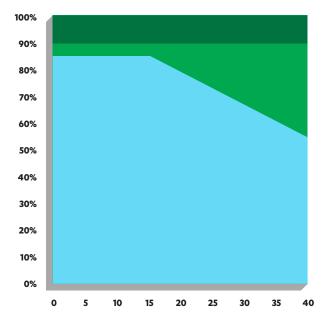
Figure 2 outlines the four lifecycle, or target date, fund designs analyzed in this research. The left panels of Figure 2 show the glidepaths of the T Rowe Price (2014) and NextCapital Group Inc. (2014) MarketGlide Benchmark strategies without the real estate blend, and the right panels those with the real estate blend.


In each case, the glidepaths have the familiar downward sloping allocation to equities when plotted against time. The T Rowe Price (2014) design has a higher overall allocation to stocks because in the early years of the glidepath, the allocation to stocks is maintained at 90 percent then reduced to 55 percent at retirement. The Benchmark strategy, on the other hand, immediately and regularly reduces stock weights from an initial level of 90 percent and the stock weight at retirement is at a lower level of 40 percent. In both cases, stocks dominate the risk budget. Please refer to Figure 2 for the detailed glidepath rules.¹⁹

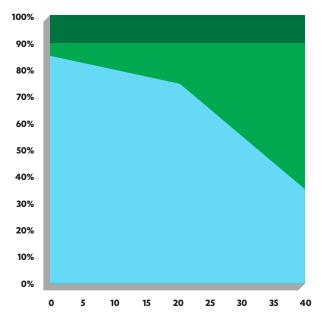
¹⁹ Note that the glidepaths depicted in Figure 2 are approximations of those cited because the authors didn't have access to the exact glidepath definitions. Given this research seeks to investigate the marginal effects of adding real estate to a DC plan design in general terms, this approach is reasonable.


[&]quot;"Superannuation" is the generic name given to retirement savings in Australia. Because the Australian system is overwhelmingly defined contribution in nature most Australians would see "superannuation funds" and "defined contribution pension plans" as equivalent concepts.

¹⁸ According to the P&I/Towers Watson World 500 survey (Pensions & Investments, 2011), The Vanguard Group is the fifth largest investment manager in the world (as at 31 December 2010) when ranked by total assets under management. Even when investment managers eschew the balanced fund label in favor of more sophisticated sounding labels a balanced-style portfolio is often used as a performance benchmark. For example, BlackRock's actively-managed Global Allocation Fund uses a 60/40 portfolio as a "benchmark index" (BlackRock, Inc., 2014). By adopting such a reference benchmark, this investment manager is signaling that it considers balanced funds as its competitive universe. From the perspective of a plan member, for BlackRock's approach to be of value it must outperform a 60/40 benchmark (after fees) or the (rational) plan member would consider switching to a lower cost passive balanced option.


T Rowe Price Glidepath

From year 0 to year 15 portfolio is 90% US stocks/ 10% US bonds. From year 15 to year 40 the US stock weight falls linearly from 90% to 55% and the US bond weight rises to balance to 100%.


MarketGlide Benchmark Glidepath

From year 0 to year 20 the portfolio comprises of US stocks whose weighting falls linearly from 90% to 80% and US bonds whose weighting rises to balance the portfolio to 100%. From year 20 to year 40 the US stock weight falls linearly from 80% to 40% and the bond weight rises to balance to 100%.

T Rowe Price Glidepath with Real Estate Blend

From year 0 to year 15, portfolio is 85% US stocks/ 10% real estate blend/ 5% US bonds. From year 15 to year 40 the US stock weight falls linearly from 85% to 50%, and US bond weights rise from 5% to 40%. The real estate blend weight remains 10% throughout.

MarketGlide Benchmark Glidepath with Real Estate Blend

From year 0 to year 20 the US stock weight falls linearly from 85% to 75%, the US bond weight rises from 5% to 15% and the real estate blend weight remains at 10% throughout. From year 20 to year 40 the US stock weight falls linearly from 75% to 35%, the US bond weight rises from 15% to 55% and the real estate blend weight remains 10% throughout.

Figure 2: Target date, or lifecycle, strategies under consideration.

Having resolved the asset allocation strategies to be examined, let us now consider how performance and risk will be judged.

We employ four performance and risk measures which are estimated at our assumed retirement age of 65 (see Exhibit D):

Shortfall measured by comparing the estimated RWR for a given path against the following thresholds, and presented in the form of a so-called "heat map." These thresholds should be interpreted as follows: success is defined as a terminal RWR of 12 times final salary (or 12x) or higher; failure is a terminal RWR of 5x or lower; and, there is a spectrum of varying degrees of success or failure between 5x and 12x, with 7x defined as moderate.

Table 3

DESCRIPTION	COLOR CODE	RWR THRESHOLD	ESTIMATED RR EQUIVALENT*
SUCCESS		12X	69%
MODERATE SUCCESS		7X	40%
FAILURE		5X	29%

^{*} Assuming 30 year horizon and an interest rate of 4 percent.

Value at Risk (VaR) at the 5th percentile; Conditional VaR (CVaR) at the 5th percentile; and Median terminal outcomes for each worker.

These measures represent intuitive, wealth-relative outcomes that provide retirees with a more understandable measure of whether their retirement income is sustainable.

Exhibit D - Retirement risk measures

The first measure we consider is shortfall risk. In this study we compare the RWR at any time in the accumulation phase (i.e. at time t, or RWRt) to a number of thresholds: success, moderate success and failure. In this research, we show the RWR through accumulation phase plotted as a heat map. If RWRt exceeds the success threshold of 12x final salary the heat map will display a green cell. See Exhibit E for a full discussion on how to interpret heat maps. Typically, shortfall risk is the probability of falling short of some threshold. Using a simulation approach like that employed herein, shortfall risk expressed as a single measure (instead of a heat map) would be calculated by counting the number of paths where RWRT is below the selected threshold and dividing this number by the total number of paths, in this case 10,000, and expressing it in percentage terms.

The behavioral literature (i.e. Olsen and Khaki, 1998) has argued that, in considering risk, investors weight the magnitude of loss over its probability. We therefore consider two measures of risk that capture the magnitude of loss in different ways: value-at-risk (VaR); and its more robust variant conditional value-at-risk (CVaR).²⁰ CVaR measures the average loss conditional on the loss exceeding the VaR threshold at a given confidence level. In this way, CVaR gives us more information about the nature of tail risk than VaR, which only provides us the threshold at which tail risk begins. In line with Olsen and Khaki's (1998) claims about the importance to investors of the potential magnitude of loss, VaR and CVaR each incorporate the concept of probability via the confidence level, as well as the potential magnitude of the loss.

When using simulation approaches that produce a large number of potential outcomes it is often difficult to summarize expected performance. In this study, we use the median terminal wealth outcome as a measure of what an investor might reasonably expect from a given strategy. We have selected median because it is intuitive to understand (i.e. one has a 50 percent chance of getting the median outcome or better), and it doesn't suffer from the deficiencies of other measures of central tendency like the mean (which can be skewed in the presence of outliers).

It is obvious that a comprehensive picture of potential performance requires the synthesis of all these measures.

We now consider the results of the analysis.

²⁰ Conditional value-at-risk (CVaR) is known by other names. Rachev et al. (2008) highlight that this measure, for a discrete distribution function, is also variously known as average value-at-risk or expected shortfall. Rachev et al. (2008) define expected tail loss (ETL) as the equivalent measure for a continuous distribution function. We prefer CVaR because it is, to us, the most descriptive term and because of its widespread use amongst practitioners.

Each combination of investment strategy and participant profile was simulated using 10,000 block bootstrap sampling trials. The convergence of results for each set of simulations was checked to ensure the number of simulations was sufficient to achieve stable results. The results are reported in two formats:

Tabular representation of VaR, CVaR and median measures (discussed in detail in Exhibit D) in Table 4 below; and Shortfall presented as heat maps (see Exhibit E), where the color signals success, or otherwise, against the thresholds outlined above.

The heat maps for the 40 year horizon scenario are presented in the body of the paper, with the results for the 25 year horizon reported in the Appendix.

Exhibit E – Heat maps, and how to read them

Heat maps offer a visual and intuitive method for comparing investment strategies. The heat maps depicted in this study are constructed as follows:

- 1. Using the simulation method outlined earlier, we produce 10,000 return paths which represent 10,000 potential futures (based on historical returns);
- 2. Using these return paths, we generate 10,000 "evolutions" of wealth (expressed in RWR terms) for the given horizon (in this study either 25 or 40 years). We thus have 10,000 potential experiences for a plan participant as a way of understanding what a strategy might produce for an individual (assuming the contribution rate, the salary growth rate and the horizon);
- 3. To summarize this output (a spreadsheet of 10,000 rows and 25 or 40 columns), we sort the 10,000 rows from the best terminal outcomes (at the top) to the worst (at the bottom). To reduce the number of rows we report, we take every 200th row. To reduce the number of columns we report, we focus on the latter half of the accumulation phase where the strategies can be differentiated. [In the first half or so of the accumulation phase all strategies deliver poor outcomes.] Each cell shows the estimated RWR at that given point in the accumulation phase (technically, RWRt).

In summary, the horizontal (or x) axis depicts time and the vertical (or y) axis shows every 200th simulated path of wealth (expressed in RWR terms) from the best (at the top) to the worst path (at the bottom).

In making a comparison, a superior heat map is characterised by the following:

- 1. **More green overall** The greener the heat map, the more effective is the strategy at achieving success which in this study is defined as a RWR of 12x final salary (equivalent to a replacement rate of 69%);
- 2. **Less red** A strategy that produces fewer red cells means that the strategy produces less in the way of very poor outcomes. Because of the construction of the heat map, red cells are more likely to appear at the bottom of the heat map, which depicts the worst simulated paths from the simulation. Comparing the lower quarter of heat maps therefore allows the reader to compare the downside risk of competing strategies;
- 3. **Smooth transitions** The ideal heat map would see a smooth transition from red in the early years to green in the later years for any given path (or row). Some strategies with high allocations to risky assets see transitions from green back to amber or even red following a big market event. Given the deleterious behavior of investors after a large drawdown (i.e. switching out of risk assets), a smoother accumulation phase is expected to equate to a better overall outcome.

As we discussed earlier, we simulate portfolio outcomes for two workers; a 25-year old worker and a 40-year old worker. The simulation assumes retirement at age 65, initial salary of \$40,000 for a 25-year old worker and \$53,835 for a 40-year old worker, with salary growth rate of 2% and a contribution rate of 8%. The income of each worker in their final year of work prior to retirement is thus \$88,322. In Table 4 we provide the simulation results for each worker using both terminal portfolio values and the retirement wealth ratio (RWR) as a means for comparison. As we defined it earlier, the RWR is the ratio of terminal wealth to final salary. We provide the Value at Risk (VaR), Conditional VaR (CVaR) and median results in both terminal portfolio value and RWR terms.

The best performing portfolio against a 12x RWR target is naturally the aggressive approach which maximises its holding of stocks, giving some support to the views of scholars like Siegel (1994). Not surprisingly, the 100% Bond portfolio produces the lowest median outcome of all strategies, but also with poor tail characteristics. These poor outcomes result from a working life of lower overall returns and less in the way of compounding benefits. This finding highlights the risks of taking too little risk during the accumulation phase; the plan participant merely ensures that he or she has a very high probability of a poor outcome.

Looking at the (theoretical) 100% Real Estate Blend portfolio, we start to see some of the benefits of diversification, naïve though it is. Predictably, we forego the positive outcomes available to investors in stocks, but we gain in terms of performance in the worst scenarios. Note, for example, that the 100% Real Estate Blend portfolio provides the highest CVaR terminal portfolio value for our 25 year old plan member (i.e. a 40 year horizon) suggesting that the very worst outcomes for this strategy are superior to those of the others analyzed. The chances of such a portfolio being used as the only investment in a DC plan, however, are very remote.

	VAR (5%) TERMINAL PORTFOLIO VALUE	CVAR (5%) TERMINAL PORTFOLIO VALUE	MEDIAN TERMINAL PORTFOLIO VALUE	VAR (5%) RETIREMENT WEALTH RATIO	CVAR (5%) RETIREMENT WEALTH RATIO	MEDIAN RETIREMENT WEALTH RATIO
25-year old						
100% Stocks	\$1,513,837	\$1,071,392	\$6,136,084	17.14	12.13	69.47
100% Bonds	\$581,781	\$533,032	\$847,152	6.59	6.04	9.59
100% Real Estate Blend	\$1,474,632	\$1,209,982	\$3,907,249	16.70	13.70	44.24
60/40 Stocks/Bonds	\$1,130,436	\$978,427	\$2,730,984	12.80	11.08	30.92
55/35/10 Stocks/Bonds/RE	\$1,185,042	\$989,484	\$2,703,299	13.42	11.20	30.61
T Rowe Price Glidepath	\$1,450,102	\$1,157,071	\$4,174,756	16.42	13.10	47.27
T Rowe Price Glidepath with Real Estate Blend	\$1,335,309	\$1,084,201	\$4,143,593	15.12	12.28	46.91
Benchmark Glidepath	\$1,185,109	\$980,055	\$3,377,719	13.42	11.10	38.24
Benchmark Glidepath with Real Estate Blend	\$1,399,373	\$1,070,883	\$3,448,584	15.84	12.12	39.05
40-year old						
100% Stocks	\$940,013	\$779,909	\$3,742,004	10.64	8.83	42.37
100% Bonds	\$636,340	\$597,708	\$843,426	7.20	6.77	9.55
100% Real Estate Blend	\$892,934	\$667,653	\$1,926,904	10.11	7.56	21.82
60/40 Stocks/Bonds	\$1,011,149	\$832,114	\$2,171,420	11.45	9.42	24.59
55/35/10 Stocks/Bonds/RE	\$942,105	\$783,747	\$2,098,405	10.67	8.87	23.76
T Rowe Price Glidepath	\$1,052,848	\$908,521	\$2,460,000	11.92	10.29	27.85
T Rowe Price Glidepath with Real Estate Blend	\$1,109,354	\$932,188	\$2,500,428	12.56	10.55	28.3
Benchmark Glidepath	\$934,378	\$784,907	\$2,177,632	10.58	8.89	24.66
Benchmark Glidepath with Real Estate Blend	\$1,003,385	\$895,753	\$2,295,365	11.36	10.14	25.99

Table 4: The 5th-percentile Value at Risk (VaR), conditional VaR (CVaR) and median terminal portfolio values and retirement wealth ratios for two workers (a 25-year old with a retirement portfolio balance of \$100,000). Simulation assumes retirement at age 65, initial salary of \$40,000 for a 25-year old worker and \$53,835 for a 40-year old worker, salary growth rate of 2% and contribution rate of 8%. All real estate allocations are evenly split between listed and unlisted real estate.

 $^{^{21}}$ This does not include any entitlements as a supplementary means of income.

Next, we turn to the diversified strategies. We begin with the traditional Balanced portfolio of 60 percent stocks and 40 percent bonds, and its alternative design which includes a 10 percent allocation to the real estate blend (the 55/35/10 Stocks/Bonds/RE portfolio). Consistent with expectations, we see that by adding the real estate blend to the Balanced portfolio (by taking equally from stocks and bonds) we improve performance in tail scenarios without giving up much in the way of expected performance for our hypothetical investor with a 40 year horizon (the 25 year old). This is possible because when we replace stocks and bonds with real estate, we are increasing diversification by adding imperfectly correlated asset classes (cf. Table 2) with nearly the same expected returns as stocks (listed real estate) and bonds (unlisted real estate) (cf. Table 1). Over the shorter horizon the results are more mixed with each measure suggesting marginally better performance for the 60/40 portfolio. It is however likely that the 60/40 portfolio will be perceived by the plan participant as more volatile due to more modest diversification (see later discussion regarding the comparisons gleaned from heat maps). Thus, we have initial evidence that adding real estate to a traditional DC investment portfolio may result in benefits for the plan participant.

We now consider the performance of our target date, or lifecycle, funds. From an inspection of the entire lifecycle in Figure 2, we see that the T Rowe Price glidepath has a higher overall allocation to stocks. It maintains its initial allocation of 90% stocks for the first 15 years of the glidepath, with a "landing point" at retirement of 55%, a higher level than the MarketGlide Benchmark of 40%. Based on this fact alone, we would expect the T Rowe Price target date strategy to deliver better overall outcomes compared to the MarketGlide Benchmark over time. This expectation is born out in the results reported in Table 4 with the absolute value of all measures being higher than the comparable statistics for the MarketGlide Benchmark glidepath.

So, what happens when we add the real estate blend investment to each glidepath? First, we should recall from Figure 2 that the allocation to the real estate blend remains constant at 10% throughout the time horizon, whereas stock weightings fall and bond weightings rise. As we observed with the longer horizon Balanced strategy comparison, we see an improvement in downside performance, with downside performance improving to a greater degree for the MarketGlide Benchmark glidepath. In contrast to the target risk strategies, we see that median outcomes improve slightly too. What drives this? As the portfolio size effect (Basu and Drew, 2009) becomes manifest – that is, in the last half of the accumulation phase before retirement – the superior performance of the real estate blend strategy over bonds compounds, thus, benefitting performance.

We see that over a 40 year horizon, adding a real estate blend strategy to both target risk and target date portfolio designs results in better downside performance and, on occasion, marginally better retirement wealth outcomes.

Finally, we also see that the benefits of adding the real estate blend appear to occur regardless of the age of the participant. The results for the 40-year old investor appear to mirror the results of the 25-year old, indicating that similar expected performance is possible, but with better downside performance. The most noticeable impact is the difference between the absolute value of each measure for the same strategy. For the 100% Stocks strategy, median wealth is 64% higher over the 40 year time horizon (\$6,136,084) compared to the 25 year time horizon (\$3,742,004). In contrast, for the 100% Bond strategy median wealth is 0.4% higher over the 40 year horizon (\$847,152) compared to the 25 year horizon (\$843,426). What accounts for this enormous difference in the effect of time horizon? The main contributor is the effect of compounding on a rapidly growing portfolio size.

Exhibit F - Valuations and liquidity

Listed real estate investments are valued daily along with all other exchange-listed securities. While at face value this may appear desirable, the property exposures embedded in the listed security are valued far less frequently. Listed real estate returns are, therefore, at least partly about overall equity market conditions and other factors, including the direction and level of interest rates. Whatever the realities of the valuation process, daily valuations are considered desirable when most of the other assets in a DC plan are also valued daily.

What does this mean for private, unlisted real estate where full appraisals may be conducted annually and desktop appraisals performed on a quarterly basis? To address this question, we consider the experience of another developed economy with a preponderance of DC plans and significant allocations to unlisted real estate: namely, Australia.

Around 84% of assets in the Australian pensions (or superannuation) system are DC in nature, with average allocations to real estate of around 9%. Of this allocation around 7% is unlisted in nature and 2% listed as of June 30, 2013 (Association of Superannuation Funds of Australia, 2014). The reasons for this bias to unlisted real estate have not been the subject of specific investigation (to the authors' knowledge) but are thought to include:

- A long history of unlisted real estate investment within Australian pension funds;
- A relatively limited listed real estate (or A-REIT) opportunity set;
- Relatively clear guidance from regulators about unlisted assets; and
- Established practice among funds in relation to incorporating unlisted asset valuations into unit prices.

The issue of valuations (for all unlisted assets including private equity, infrastructure, timberland, etc.) in the Australian system is even more problematic, because plan participants have complete portability (i.e. they can typically switch plans at will). While this adds an additional challenge, strong positive cash inflows into all Australian DC plans – due to compulsory superannuation contributions – allows funds access to significant liquidity to deal with fund redemptions (which tend to be small in any case).

On the subject of liquidity, including unlisted assets such as unlisted real estate poses challenges to pension fund management. As already mentioned, this is especially so in pension systems which allow portability across plans and/or switching within plans. Global best practice seeks to minimize the impact of stale prices on the unit price and, in turn, on plan participants.

So, how do Australian DC plans deal with valuation and liquidity issues? In their unit pricing process, funds generally provide for returns on a daily basis and adjust when updated valuations are conducted. The regulator of superannuation funds, the Australian Prudential Regulation Authority (APRA), provides prudent standards and guidance to pension funds on liquidity risk management, which includes stress testing (see Superannuation Prudential Standard (SPS) 220 Risk Management, section 12(c); SPS 530 Investment Governance). Guidance on unit pricing is provided in a joint publication by APRA and Australian Securities and Investments Commission (ASIC), the Australian equivalent of the US Securities and Exchange Commission (see Unit pricing - Guide to good practice).

Even with the challenges of valuation and liquidity, plan sponsors of Australian DC plans have implicitly (at the very least) accepted the rationale for investing in unlisted assets, especially unlisted real estate. Real estate is considered a cornerstone investment for Australian DC plans.

Let's now turn to the heat maps and consider what insights they reveal. Consider Figure 3 which shows the heat map for the 100% Stock portfolio. Measured against the threshold RWR of 12x final salary, a large proportion of the paths achieve success (i.e. the right column is almost entirely green). However, it is arguable that the threshold RWR should be higher to take account of the amount of risk being taken by the plan participant. It is also noteworthy, but not surprising, that many paths are volatile; colors change quite suddenly, and color changes occur in both directions (green to red, and vice versa) through time.

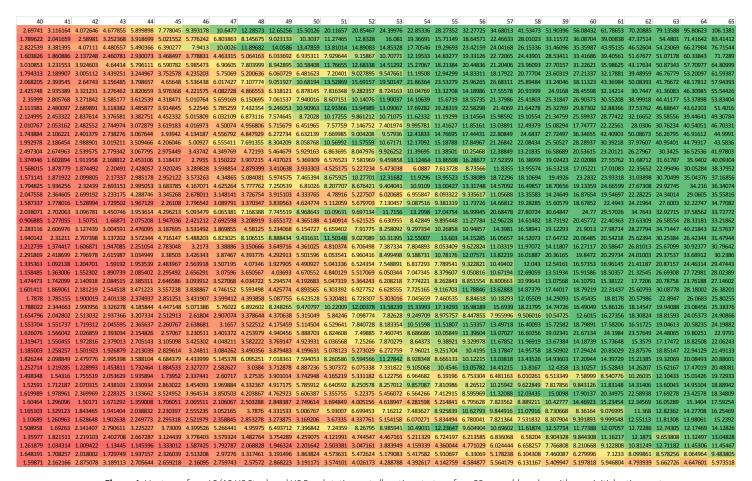
	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65
5.076	002 6	.007228	7.074542	9.148037	10.16471	12.97288	16.91004	23.75655	27.93901	37.69121	43.23366	51.43958	59.64665	69.06032	89.11417	106.3811	123.9667	151.3293	244.922	217.0694	244.0168	286.3183	251.9251	291.486	416.0645	556.5547
	-							30.08014																		
								17.9452																		
								7.552901																		
								7.72116																		
								16.3985																		
								11.0173 14.16781																		
								7.844974																		
					6.629712			10.34591																		
					6.844784			16.22758														60.85277				
								4.181347																72.0597	100.5502	
								3.14393																78.99019	101.933	136,4254
5.067	711 6	.063944	8.516866	10.92178	12.81931	13.67	15.92103	10.83349	13.72443	16.80759	21.4778	24.53621	24.23016	32.20838	37.74145	41.93917	48.55833	53.22495	65.73639	44.28021	50.79435	64.7516	80.55911	93.30066	110.0719	129.4557
2.902	185	3.29395	4.044827	4.954828	5.834143	6.444259	6.900118	8.846738	6.699477	7.420235	10.02158	13.11759	14.81626	18.41775	21.5354	26.80838	35.14867	29.04993	34.7883	40.76624	47.58308	61.01301	57.28342	78.31647	92.59142	121.1816
1.633	718 1	.992077	2.587927	3.435053	4.074479	4.542753	6.266463	7.444355	9.335022	10.73246	12.93153	17.37048	14.12646	18.22954	16.75211	21.30031	25.06719	36.52731	44.33539	60.2092	69.49751	85.04621	65.86497	63.9443	85.6147	114.6234
2.233	375 2	.640435	3.191732	3.464276	4.148356	5.349592	6.47241	7.786369	7.637602	8.995868	11.54136	13.69329	20.897	22.25871	16.77816	13.49987	13.44989	18.39249	22.53771	27.08572	32.81641	47.59036	52.4972	56.06027	85.63707	109.187
5.065	909 6	.904769	7.879824	7.437159	9.758526	11.88926	13.18024	15.02376	16.68032	19.85073	30.36209	27.04933	33.04756	41.78305	44.62212	52.03867	62.05027	69.3864	79.80489	101.454	108.0188	137.2058	119.3922	102.1276	85.0429	106.117
1.740	134 1	.521431	2.079608	2.489833	3.093975	3.426896	4.32276	5.412014	8.000731	10.26608	10.55954	12.38479	14.57241	19.56472	23.73814	20.34418	23.55606	33.2359	40.76969	33.05234	33.88338	42.14955	58.82937	74.552	92.945	101.2994
								2.714766																		
								6.18546																		
								11.4202																		
								8.454908																		
								4.305488 5.865875														38.65269				
							_	9.815325																	113.0226	
								2.936644																		
								4.116716					7.971431													
								6.325497																		
								5.316206																		
								14.50288																	60.31378	
1.310	334 1	.388884	1.558088	1.906651	1.453486	1.854852	2.259999	2.244054	2.492997	2.909173	4.201542	5.703943	6.759758	6.576958	5.843035	7.660711	8.237183	9.206454	12.10892	15.87685	17.00435	22.60041	24.25683	32.52929	42.52067	49.96325
1.596	504	2.17829	3.017339	3.790819	3.567373	4.835197	3.790518	4.430953	5.417563	5.308209	6.88562	8.586021	7.008994	8.380551	10.89703	12.15736	13.95784	13.19546	15.80323	21.60006	23.86386	32.2201	46.72897	34.63081	38.1146	48.70818
2.293	173	2.80519	3.258549	4.302378	4.939695	6.414925	7.267333	8.437117	9.018989	11.56429	9.578386	9.767073	6.622177	9.703592	9.159047	10.22228	12.01738	17.3262	21.60635	25.25867	30.51837	40.99304	36.07445	31.75597	43.33035	46.36834
4.53	583	5.84024	7.688255	9.946906	10.85308	12.062	11.78841	15.15864	16.78549	15.79428	17.35409	13.66119	15.83427	21.54674	13.91985	16.28816	10.21729	13.89323	15.28711	17.9819	21.54063	25.81957	32.30914	42.66369	51.89561	44.43449
0.781	516	0.97898	1.244249	1.533713	1.894721	1.669533	1.618779	2.091464	2.253375	2.276933	2.274762	2.249778	2.769991	3.311304	4.452168	6.28203	8.232345	9.403516	10.9859	13.12324	16.32652	21.81238	25.54857	33.40055	36.69825	42.00172
								6.825289												39.13798						
								4.433401																		
								7.51863														31.4274				
								2.309673										13.87233				25.32473				
								7.345379																		
								4.046571 5.11626																		
								1.999822					5.088295													
								8.070111														39.23867				-
								5.495429																	18.52953	
								3.159993																	16.56443	
					2.491545			4.117685																		
								3.058471																		
1.894	277	2.28982	2.928984	3.987675	4.410545	4.861854	5.949654	7.268944	9.084793	7.728181	9.216163	11.13567	7.161822	8.616952	8.929986	10.74817	11.94788	8.101365	10.68213	8.665792	9.774214	8.140595	5.296081	6.465175	7.26579	8.479059
1.102	933 1	458984	1.760979	1.594501	1.449898	1.775031	2.110116	2.5514	2.323133	2.974536	3.469836	3.062005	4.340313	5.73428	6.345926	8.054337	7.274927	8.688912	6.142747	4.362906	4.897887	5.48279	4.117389	3.54045	4.899421	4.211337
																										_

Figure 3: Heat map for a 100% Stock asset allocation strategy for a 25-year old worker with zero initial retirement portfolio balance, 2% salary growth and 8% contribution rate. Block bootstrap simulations for 10,000 paths (every 200th path depicted).

Figure 4 shows the heat map for the 100% Bond portfolio. Consistent with the conclusions drawn from Table 3, very few paths achieve success when defined as a RWR of 12x final salary. The main conclusion we can take from this heat map is that such a measure of success is too optimistic for a 100% Bond portfolio.

4	0 41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65
	7 1.413829			1.920678			2.933135												9.42761						16.8421
1.39662	5 1.602237	1.786949	2.072303	2.141428	2.46611	2.889175	3.413937	3.549256	3.724375	4.207781	4.61538	5.382366	6.258323	6.393845	6.475284	7.066667	7.283471	8.267363	9.091791	10.51115	10.37914	11.32556	10.94872	12.86541	15.34887
1.24547	5 1.387776	1.483643	1.495662	1.663479	1.856435	2.140242	2.633537	3.044532	3.610835	4.095101	4.40503	5.140114	5.527056	6.152473	6.605788	7.296495	8.265015	8.229921	8.704689	9.743147	10.02813	12.0071	11.67584	13.90965	14.43039
1.38132	4 1.652225	1.844202	2.032905	2.205593	2.294883	2.618159	2.982558	3.425413	3.791332	4.30123	4.791473	5.619716	6.302823	6.590967	6.779583	7.137689	7.800334	8.428539	8.212474	9.033382	10.5378	10.95061	11.7558	13.33255	14.06857
1.22366	8 1.480576	1.670842	1.749575	1.872663	2.0035	2.435445	2.934914	3.572998	3.534556	3.652136	3.615078	4.058039	4.622024	5.253764	5.509628	6.595825	6.938173	8.077192	8.67559	8.761862	9.407096	9.127529	10.16142	11.90473	13.60804
1.15869	8 1.431589	1.61689	1.76406	2.090173	2.176189	2.56745	3.012596	2.983228	3.170266	3.48767	4.102623	4.480986	5.289888	5.616281	6.273207	6.861616	7.298746	7.895888	8.364313	9.248813	10.39984	10.64767	11.49386	12.18992	13.03825
1.36575	4 1.48544	1.717663	1.881927	1.834801	1.95412	2.271119	2.552886	2.482915	2.592587	2.79347	3.039157	2.962145	3.415551	3.903718	4.224809	4.984488	5.388722	5.990118	6.318389	6.993104	7.923257	8.961001	10.25485	11.90337	12.78621
	3 1.32938						2.758621																		
	2 1.310852																								
	3 1.435973																								
	5 1.502306																								
	3 1.196731																								
	8 1.330845																								
	9 1.511567																							10.54776	
7	2 1.72127																								
	8 1.243627 9 1.156658																								
	9 1.156658																								10.65856
	9 1.333056																								10.4999
	8 1.251194																								
	2 1.241591																								10.14263
	3 1.129474																							8.974967	
	5 1.258603																							9.370995	
	4 1.094116																							9.531902	
	5 1.166896																								
	2 1.298269																							9.167806	
0.95640	2 0.954214	1.073021	1.339654	1.526032	1.589457	1.73591	1.997307	2.126913	2.238168	2.344077	2.500601	2.796774	3.231128	3.795329	3.995911	4.506177	4.986053	5.396022	6.007691	6.376673	6.942645	7.471521	8.286136	8.519337	9.426634
1.22518	5 1.357075	1.496964	1.682468	1.796072	1.927408	2.094834	2.180455	2.276975	2.647522	3.20543	3.371566	3.74384	4.082031	4.173324	4.494232	4.910787	5.464547	5.831547	6.089924	6.259382	6.624601	7.575121	8.330189	8.464485	9.326062
1.15013	8 1.314722	1.430902	1.637726	1.646096	1.710456	1.724382	1.826259	2.2314	2.411511	2.594035	2.973911	3.238814	3.39568	3.596215	3.936893	4.53856	4.681111	4.586806	5.51748	5.863107	6.73196	7.364281	8.253519	8.387289	9.231865
0.98193	5 1.021137	1.108574	1.208131	1.408909	1.593517	1.631883	1.779178	1.988012	2.145274	2.32832	2.526087	2.777184	3.270349	3.442328	3.805487	4.27277	4.695228	4.849799	4.952945	5.393089	5.658968	6.685943	6.620055	7.719523	9.096648
1.45842	1 1.567877	1.836824	2.042066	2.062762	2.383645	2.434026	2.494933	3.006333	3.293801	3.458673	3.775979	3.73684	4.145267	4.259502	4.500102	4.983361	5.24332	5.08742	5.198959	5.662757	6.429743	6.611344	7.305445	8.018965	9.04049
1.24177	5 1.463227	1.649121	1.82101	1.980797	2.221008	2.230596	2.653188	2.849207	3.0087	3.437886	3.638566	4.054466	4.128335	4.412203	5.080185	5.439041	5.51546	5.961431	6.637657	6.425291	6.703715	7.216277	7.795525	8.519179	8.923175
1.23448	5 1.377016	1.560127	1.663174	1.668245	1.680455	1.695082	1.880891	1.977796	2.151558	2.358316	2.614251	3.01083	3.315831	3.711911	3.986833	4.181487	4.800142	4.75634	5.294941	6.069528	6.606277	7.300997	8.053553	8.594588	8.815516
	5 1.069508																								
	3 1.476484																								
	9 1.350125																								
	2 1.303178																								
	9 1.223163																								
	4 1.426979																								
	5 1.413964																								
	8 1.217629																								
	1.189391																								
	5 1.261434 4 1.287859																								
	4 1.287859 7 1.20218																								
	4 1.293352																							6.627492	
	3 1.045769																								
	7 1.092521																								
	5 1.207627																			4.79844					
	9 1.08463																			4.504427					
	9 0.990837																								

Figure 4: Heat map for a 100% Bond asset allocation strategy for a 25-year old worker with zero initial retirement portfolio balance, 2% salary growth and 8% contribution rate. Block bootstrap simulations for 10,000 paths (every 200th path depicted).


In Figure 5, we see the heat map for the 100% Real Estate Blend portfolio. Once again we see a large proportion of paths resulting in success, but this time, with an overall smoother transition to success (i.e. the transition to green is smooth and, in most cases, permanent) than the 100% Equity portfolio. This is due to the ability of unlisted real estate to mute volatility.

40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65
						7.698949																		104.4606	
						5.837504																			
						4.532544																			
						5.38166																			
						6.390791																			
						4.692176																			
						6.609883 4.883162																			
						3.622121																			
						4.938484																35.01592			
						4.050398																			
						4.284117																			
						5.891845																			
1.370295	1.48955	1.68032	1.853142	2.075813	2.55527	3.170608	3.530097	4.146337	4.608964	6.072455	7.132466	9.056555	10.58873	12.75442	14.98005	15.97085	17.37415	20.43383	23.49311	25.70274	31.39604	35.62431	40.56534	49.95359	58.00349
1.530312	1.888454	2.120568	2.491224	2.799877	3.251879	3.714828	4.151966	4.979837	6.368429	7.383129	7.967644	9.133184	10.69694	14.40272	16.05884	17.77264	20.30661	23.5903	25.77343	24.55887	28.78789	33.97807	43.32906	47.73124	56.18868
1.852991	2.127554	2.492543	2.856613	3.334859	3.919981	4.958639	5.469226	5.897324	7.497366	8.324313	9.593943	11.63393	12.41473	14.28176	15.78078	19.0619	20.19359	23.04211	24.74591	28.58167	30.99945	33.972	41.62706	48.34744	55.09117
1.683973	2.068388	2.431986	1.781537	2.206461	2.565682	3.139065	4.121285	4.568127	5.762631	7.468932	9.010672	10.95224	13.3473	15.24871	17.9555	23.94809	27.80565	23.59289	26.99829	29.36413	33.90319	45.27103	38.38104	45.16284	54.02695
2.722864	2.750384	3.127159	3.875296	4.354081	4.736709	5.51606	5.851787	6.16586	7.566581	8.260168	11.01894	12.87046	14.24939	15.22426	18.09982	20.66307	22.46295	25.79194	29.35187	35.03783	38.18467	42.92611	47.22081	53.27558	52.90583
2.092534	2.300158	2.556936	3.155751	3.53504	4.198861	3.592697	4.744369	5.524733	6.357724	7.869021	9.022967	10.21097	12.44863	14.97998	17.28082	20.91359	23.54476	27.51063	31.58365	33.5613	38.71606	35.67502	36.43648	42.05941	51.26228
1.858734	2.101789	2.543396	3.068709	3.288806	3.910459	4.638936	4.925031	5.842687	6.70046	7.73341	9.233971	10.20289	11.30374	13.08971	17.22544	19.77454	19.21861	20.16005	22.88643	26.61147	33.32931	33.80079	38.34841	49.69202	49.73468
						5.079582																			
2.31304	2.882557	3.374762	4.066192	4.895366	5.419643	6.663782	7.306307	8.39079	10.00649	11.57531	13.17443	14.77991	14.71701	19.78759	21.20039	24.37791	28.74658	33.3261	35.25652	38.46949	43.97774	48.63436	53.30866	68.30936	47.94023
						4.291734																			
						3.797751																			45.28044
						5.448391																			
						6.331507																			
						5.236087 4.958006																			
						5.96505																		35.74674	
						5.240345																		33.7-107-1	11.23030
						3.072043																			
						4.676881																			
						4.702916																			
						3.479632																		31.96437	
2.105888	2.617712	2.814303	3.182743	3.763807	2.685804	3.136922	3.930749	4.3011	5.047821	5.204833	6.148175	7.02296	9.272828	10.47961	11.48505	13.34557	14.31505	17.63488	19.51465	21.84145	20.7897	24.9542	28.24572	29.9	34.58159
1.007129	1.076888	1.176826	1.362031	1.475152	1.903004	2.414728	2.892845	3.240403	4.039018	4.665229	5.537335	6.745772	7.781021	8.64548	10.58215	12.05834	13.03599	15.25815	16.80037	18.27722	20.07898	22.69119	26.06038	28.74097	33.89099
1.936647	2.325119	1.674843	2.044171	2.270705	2.307238	2.906375	3.469469	4.076386	2.69146	3.463261	3.950659	4.615307	5.717022	6.788109	8.793241	10.12929	10.71233	12.28228	16.0841	17.67711	19.40761	22.02174	25.33006	26.69458	32.45592
1.947451	2.361992	2.664373	3.055567	3.551176	4.171677	4.887009	6.542387	8.112646	6.078524	7.178888	7.912588	9.315335	10.33209	12.07176	13.02381	14.46673	9.454127	11.59605	12.82375	15.29918	17.51068	20.79758	24.44828	28.74355	31.28472
1.297189	1.540469	1.811683	2.249622	2.516585	2.929832	3.284475	3.867862	4.282213	4.987182	5.430575	6.159277	7.316066	8.494561	9.581537	11.00513	12.46722	13.484	15.44109	16.97285	18.69657	19.68885	23.16136	25.75921	27.99629	30.42241
1.317035	1.512919	1.796507	2.117042	2.563468	2.890352	3.51729	4.085086	4.595442	5.598813	5.823468	6.51949	6.950673	7.977047	9.74177	10.35073	12.45333	11.41185	11.9806	13.06841	16.57573	19.54497	21.33621	22.49214	26.94713	29.31293
1.593858	1.640545	1.877074	1.830498	2.129217	2.404254	2.622931	3.126512	2.901857	3.259008	3.733938	4.034029	4.867501	5.428565	6.46181	7.041491	8.737516	10.42746	12.31975	15.23658	17.98611	16.60937	16.94442	21.65018	23.8346	27.63373
						6.113638																			
	2.216448					4.214115																			
						6.533051																			
						4.616919																			
						2.755497																			
						2.059789 4.63504																		15.82576	
						5.083845																			
						4.303253																		10.26326	
						1.795222																			
1.702303	1.700251	2.0012/5	2.223037	1.055052	1.003330	1.733222	1.300703	1.54110	1.01505	2.307144	2.710313	3.03/743	2.400345	2.730/0/	3.310000	3.333044	4.310013	4.3/3/41	3.101003	3.707223	3.404740	3.310/11	7.500210	3.274011	3.703048

Figure 5: Heat map for a 100% Real Estate Blend asset allocation strategy for a 25-year old worker with zero initial retirement portfolio balance, 2% salary growth and 8% contribution rate. Block bootstrap simulations for 10,000 paths (every 200th path depicted).

Figure 6 shows the heat map for the target risk Balanced portfolio while Figure 7 shows the alternative Balanced portfolio which includes an allocation to the real estate blend strategy. Using the guidance from Exhibit E, what do these heat maps tell us? First, in Figure 7, there are marginally better outcomes in the center of the heat map. This means that the plan design with the real estate blend strategy gets closer to success earlier than the basic 60/40 Balanced design. Second, Figure 7 displays less dismal outcomes than Figure 6. Where cells aren't green, they are more likely to be amber in Figure 7 and shades of red in Figure 6. Finally, and perhaps most importantly, given the behavioral consequences of volatility, the Balanced portfolio with real estate in Figure 7 produces a smoother transition to portfolio success. Figure 6, on the other hand, depicts a number of paths where green cells transition back to amber before returning to green again. However, Figure 7 cells tend to remain green once they have turned green. For an extreme example of the effect of portfolio volatility on success, refer to the row second from the foot of Figure 3. It shows a path that on three occasions suggests "success" (green) and yet finishes as "moderate success" (amber).

Figure 6: Heat map for a 60/40 US Stock and US Bond static asset allocation strategy for a 25-year old worker with zero initial retirement portfolio balance, 2% salary growth and 8% contribution rate. Block bootstrap simulations for 10,000 paths (every 200th path depicted).

1.65884 2.73294 2.689256 3.679251 4.25993 5.057995 5.926948 6.81952 7.065132 8.229913 9.791566 12.43674 15.81637 18.00788 19.3707 23.05956 27.57515 30.76455 36.61517 43.41468 56.43203 73.76767 93.47727 112.5037 116.5472 2.697197 3.0738 3.540395 3.505344 3.891042 4.226996 4.662671 5.188537 6.619981 7.628971 8.783284 10.70821 12.69734 15.41617 17.85432 20.85213 25.21791 28.59688 36.03026 40.17776 47.30781 52.29751 63.4461 72.84151 80.74194 10.741 2.32746 2.697197 38.0721 47.43418 60.65514 1.537246 1.783072 2.055295 2.196891 2.602874 2.894409 3.553274 4.230781 5.288024 5.970081 7.346023 8.414073 9.674062 11.08992 13.44839 15.47852 19.76473 22.58813 27.01436 29.98027 33.06055 34.5153 **4.36537 5.587754 6.697886 8.229397 9.651407 9.877646 11.75305 13.96798 16.32335 16.86321 19.70379 21.98422** 14.0023 18.92175 22.09741 24.66953 31.98617 2.038324 2.457401 3.144773 3.326919 4.007347 3.238152 3.562383 3.833502 4.698734 5.885347 6.116033 7.188765 7.696131 8.798443 10.10173 11.24285 39.13621 42.29963 50.27982 1.631954 1.840404 2.179316 2.290939 2.634103 2.891927 3.589472 4.241968 5.05559 6.6904 7.39655 9.726903 11.35435 13.76737 17.50499 20.27408 22.13311 24.08287 2.042062 2.276687 2.813989 3.129074 3.862445 4.484532 5.741079 6.965796 8.419324 9.51215 10.99395 12.37908 14.45328 18.37198 17.89542 21.33105 24.5133 27.57282 30.07633 38.07351 37.84073 42.3575 49.43821 57.9256 23.67154 30.14864 30.75082 39.79671 47.12539 55.4309 27.5171 1.445632 1.53624 1.803898 2.060342 2.60131 2.963766 3.54323 3.969748 4.851741 5.05102 4.82278 5.173449 6.877123 8.23326 8.928345 9.884984 13.41386 17.20381 20.43528 24.51249 28.60753 32.81532 34.26127 40.58057 47.94705 52.8366 1.22279 1.607004 1.655908 1.879556 2.221544 2.614237 3.14143 3.103784 3.392232 4.250367 4.460735 5.857828 7.354848 7.890163 9.535726 12.18482 14.53214 17.26368 23.37305 27.31092 28.49648 29.331 31.74326 37.78388 39.29198 50.4168 2.204315 2.546457 3.245758 3.385915 3.963665 3,93379 4,455066 5,146847 6,131685 7,347701 8,106123 8,932598 9,952449 10,52817 10,07294 11,36206 13,29572 17,2191 20,38423 21,95052 21,08538 25,03414 32,14879 38.9377 46.52322 48.36354 2.21139 2.511487 3.036787 3.858582 4.132192 4.743149 5.172332 5.494573 5.946546 7.9791 8.495541 10.16436 10.73196 12.60816 14.80204 14.41329 15.80527 17.55487 22.05198 24.24598 27.86959 30.93003 29.34105 28.16556 2.82744 3.140633 3.850384 4.691971 5.439785 1.668154 1.932013 2.351181 2,102876 2,540582 2,78402 3,263909 3,130078 4,022281 5,098212 6,429056 8,059913 9,308552 10,74646 11,72087 14,37997 16,45534 20,00634 25,22407 26,64447 30,85119 31,88856 37,94527 40,79974 34.7163 35.7511 33.99029 38.97971 42.12941 2.395541 2.877336 3.188851 2.895943 3.663554 4.592175 4.451283 5.054161 3.663554 4.592175 4.451283 5.054161 6.592367 8.198303 9.511858 12.16994 12.22967 13.93883 16.02233 4.61003 4.943137 5.138396 6.160833 7.865509 8.887546 10.42344 11.65626 11.01189 12.0958 13.45006 16.02233 26.50944 31.41433 18.60301 21.51183 29.03338 16.02531 2.329789 2.753811 3.024865 3.369462 3.694238 4.310021 15.47091 **1.680744 2.034876 2.632287 2.757545 3.512365 4.092371 4.048743 5.059678 5.824151 6.037736 7.094243 8.817368 10.18534 11.90403 15.31822 17.70104** 16.4182 19.77029 24.83116 23.03725 24.80762 26.35506 34.38327 37.28195 40.20277 2.421972 2.873845 2.819937 3.327419 3.886789 4.260199 4.974596 4.729808 5.243923 6.532409 7.000303 8.958891 10.08046 11.03514 13.17904 16.14317 17.739 20.56516 23.17968 25.15329 22.89682 23.58183 28.52893 30.97826 33.2784 38.26431 1.630512 1.639526 2.082564 2.358427 3.173695 3.866373 4.612237 5.594372 7.055846 8.278379 10.17421 11.63001 11.25006 11.78222 12.95891 11.6971 12.24044 14.73379 16.82344 18.60981 21 13056 23 23896 23 3069 27 57421 3.84249 4.455668 4.754544 6.132078 7.438636 8.038593 9.258169 10.99413 1.509304 1.449491 1.723297 2.0476 2.334703 2.86224 3.145231 12.16054 1.429005 1.591802 1.91343\$ 2.31298 2.672624 3.22152 3.756733 4.443489 5.847394 6.815522 7.49255 7.971364 9.488508 12.69771 12.54338 13.38585 10.48419 11.81503 13.02336 16.5306 17.90536 20.83919 23.18064 26.86068 14.06777 1.598605 2.120225 2.355663 2.287219 2.586163 3.109085 3.75298 4.627715 5.821021 6.345173 7.455681 6.954515 8.227543 9.801388 11.63038 14.25516 15.50891 13.99068 16.1512 18.5599 22.45998 24.37895 27.19006 3.109085 3.752989 4.627715 5.821021 1.406777 1.598605 2.120225 2.355663 2.287219 2.586163 3.109085 3.752989 4.627715 5.821021 6.345173 7.455681 6.954515 8.227543 9.801388 11.63038 14.25516 15.50891 2.834543 3.060267 2.820421 3.729069 4.15492 5.187117 6.770369 6.357277 7.483349 8.631881 10.72507 12.71609 14.52135 17.19652 16.60033 15.84795 17.5705 16.54209 17.5705 16.54209 19.01831 23.00963 24.01983 23.13493 23.82776 25.3267 30.88684 32.5026 7.426996 7.786646 8.591744 10.66323 12.58617 13.16073 16.07491 12.87541 13.93381 13.44303 14.53997 2.273138 2.957792 3.420898 3.818582 4.27124 4.446571 5.195063 6.05439 6.957345 8.810459 10.23141 12.20721 9.561675 10.11725 8.316082 8.981383 10.14601 9.579974 11.86843 14.73473 16.86225 18.49389 19.66936 22.11144 25.40584 2.085459 2.58014 2.756488 3.258804 3.755627 4.422475 5.708 7.11844 6.999499 8.317836 8.791229 9.49742 12.06659 11.39615 13.71835 10.99663 12.593 13.41544 14.32466 16.57444 15.61209 18.60679 20.66132 21.41481 25.34411 29.73798 14.64705 1.455625 1.783379 1.976107 2.22918 2.626391 2.573509 2.467244 2.966521 3.543686 4.573478 5.712548 6.482606 7.561453 7.49519 7.42485 8.751896 10.53881 13.70818 15.62773 17.58016 19.81217 22.93601 24.76669 26.86805 29.49277 1.774831 2.112893 2.533634 3.020956 4.07988 3.89058 3.89058 3.89058 3.849585 4.435148 5.79042 6.814191 8.69454 10.4344 12.94965 12.22572 11.91451 13.55572 14.59544 16.18865 17.60455 16.77057 17.47086 21.91835 23.60953 26.52609 30.23284 28.82441 22.8325 2.520758 2.733043 2.221932 1.815467 2.04495 2.467042 3.038536 4.031242 4.389093 4.986316 5.303546 6.322608 7.429867 8.721679 9.455386 10.87002 12.27254 14.08919 15.88971 19.45641 22.52402 20.29553 22.40918 25.72737 28.16615 1.367358 1.374014 1.766123 2.000977 2.129549 2.146079 2.417325 2.514584 2.44231 2.874835 3.285052 4.501365 4.731932 5.703075 7.425452 8.646162 9.58149 11.11832 12.25966 14.64098 16.77353 12.91979 16.23186 18.77384 23.68848 27.57466 19.25332 2.486236 2.874564 3.469066 3.869028 4.27673 5.113873 5.69365 6.93119 6.82328 7.717091 8.907326 10.46029 11.29595 13.2738 15.28539 14.88313 17.36875 13.59003 17.24643 18.56133 17.47664 19.71533 21.2461 24.59346 26.94375 2.546257 3.222823 3.673324 4.043404 3.790734 4.303063 3.70769 3.38068 3.68685 4.36083 5.471814 6.03558 7.183659 9.55397 10.68934 12.67654 14.48025 16.79911 18.41139 15.70178 19.60738 21.28167 26.72821 28.39089 21.28167 26.72821 28.39089 21.82909 23.65982 24.37128 2,932773 2,855452 3,580697 4,416374 4,696433 5,316483 5,688924 6,631442 7,633375 6,136652 7,005505 7,584545 5,959437 7,14036 8,245498 8,307364 9,710996 11,12374 13,40648 15,42386 17,57115 15,98651 18,93559 19,95431 22,98818 1.699104 1.913559 2.18506 2.651331 2.553034 2.0331 2.36101 2.600272 2.920494 3.504014 4.110835 4.073553 4.847814 5.355604 5.992686 6.949102 8.324377 10.5938 11.50979 12.30238 13.31583 4.20348 3.995705 4.998166 4.902096 5.092224 5.661881 7.057593 9.256063 10.62364 9.702245 9.55697 9.396357 10.24743 10.31409 10.30112 10.99005 13.96735 16.11174 18.49517 1.99918 1.938853 2.316464 2.272926 2.937305 3.646787 2.419057 2.684203 3.463466 3.878003 3.693695 3.878738 4.643426 4.902047 3.865344 4.41779 4.305052 4.485955 4.92088 3.673679 6.622658 7.366115 8.552819 8.977281 9.308511 10.11405 11.67087 10.8571 12.30413 14.59623 18.43626 21.7192 18.84707 2.005831 2.283887 2.627937 3.022117 3.580925 4.139022 4.899269 5.26022 4.347342 5.56957 5.861802 6.7817 8.089748 10.13333 8.050312 9.790465 12.69977 14.73103 13.91748 10.72892 12.5181 13.89538 16.44224 19.47635 20.6414 2.83301 3.088739 2.906234 3.410093 3.393954 3.080904 3.384535 4.127977 4.965767 5.586432 6.076836 6.714638 8.05534 6.236783 6.762261 7.192525 8.30541 0.59343 0.09326 10.57809 3.137512 3.429968 3.272799 3.811676 5.02263 5.816465 6.968462 7.811505 9.160763 11.05445 12.11661 12.6077 12.18678 15.83492 19.217 18.93952 18.58803 18.32449 16.66749 12.62951 1.906192 2.441092 12.8511 15.23956 2.85601 2.6746 2.833016 2.750081 3.282631 3.141908 3.518709 3.715018 3.990227 4.857411 5.338712 5.880548 6.611026 6.626379 8.378427 10.54606 12.24649 14.27804 17.38346 17.7664 3.433446 2.784284 3.179158 3.9868 4.554195 5.321613 6.383462 6.218736 5.344834 5.851135 6.482628 7.425382 9.459866 10.98246 11.9697 14.02313 13.76464 15.10904 16.4296 1.670698 1.623782 1.937637 1.922691 2.287326 2.272688 2.3881 2.288227 2.122076 2.376598 2.336552 3.136647 1.325271 1.734038 2.010283 2.220874 2.094501 2.476319 2.485364 2.808723 3,33216 4,179655 4,890517 5,748494 5,705727 6,191771 7,22652 6,981608 6,491325 7,35397 6,91326 7,397189 7,700842 8.68238 10.19072 13.49562 16.00328 14.8787 4.035349 5.066082 5.708074 1.04081 1.291224 1.606328 1.899128 2.33774 2.432529 2.399061 2.809173 3.042635 3.574516 4.293493 3.706362 3.977136 4.109891 4.663067 5.408024 5.754583 6.519422 7.168355 7.019734 8.176891 9.450002 10.93306 12.71152 13.5498 3.222416 3.212997 3.804693 3.507172 3.037493 3.773582 4.655965 4.680551 5.406694 6.137071 7.332629 8.926985 9.731315 9.211321 10.41577 11.62499 9.322467 10.77834 1.997363 2.296922 2.714576 2.991383 2.825153 3.370458 4.071354 4.785404 3.779174 4.373575 5.397021 5.784848 6.33423 5.897783 6.947233 6.642778 7.345664 7.043289 6.846726 6.648231 7.55315

Figure 7: Heat map for a 55/35/10 US Stock, US Bond and Real Estate Blend static asset allocation strategy for a 25-year old worker with zero initial retirement portfolio balance, 2% salary growth and 8% contribution rate. Block bootstrap simulations for 10,000 paths (every 200th path depicted).

Finally, consider the heat maps for target date or lifecycle portfolio designs. As with the Balanced portfolio comparison, the T Rowe Price glidepath with the real estate blend (Figure 9) is marginally more "successful" (or green) than the equivalent design without real estate (Figure 8), suggesting that real estate assists in achieving success during the accumulation phase. Also, where paths have yet to achieve success (green), in Figure 8, these cells are more likely to be red than amber. Once again, this suggests that the addition of real estate can assist in bridging the gap to success much earlier in the accumulation phase. With these findings, we have further confirmation that a real estate blend strategy adds value in both the target risk and target date paradigms.

40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65
						16.8222													79.63579						
						7.764149																			
						12.14709																			
						9.190946 6.517969																			
		1.965417				3.936424 5.20575											24.72503								
						4.263751													51.29381						
3.796504						11.85168																			
			_			5.301814																			
2.57058	2.846906	3.088502	3.871877	4.938782	6.159729	7.130421	9.228038	10.19909	12.42161	12.9762	14.69826	17.19046	20.23139	22.76223	27.2335	31.0518	29.68011	30.43211	34.06226	39.23742	52.99748	62.47714	65.34884	67.32503	75.62309
1.358638	1.245934	1.785203	2.13628	2.524783	2.835047	3.040202	3.715801	4.748252	6.690931	7.239503	8.271197	10.16781	11.1502	13.05196	14.38743	15.39582	17.87929	20.22016	24.97488	28.30725	36.1833	44.15652	45.17606	58.56931	73.08571
1.956399	1.805477	2.012938	2.318157	2.560374	3.670757	4.26173	4.73331	5.51014	6.90273	8.05784	9.023925	10.50188	11.51244	13.63816	15.26928	19.28994	22.04185	24.26985	28.69119	33.51752	40.45709	52.33638	61.03256	66.09519	69.57087
1.777114	2.061778	1.925989	2.312258	2.660968	3.358778	4.087206	4.454157	5.067719	6.020531	7.706378	8.845097	12.48409	14.81936	18.40155	21.79177	25.89712	27.17464	31.98351	37.19515	43.86753	52.03984	53.52857	56.53773	64.68062	68.43502
3.60366	4.368676	4.854427	4.463994	3.910858	5.115148	5.583751	7.239849	7.813662	9.531088	12.16173	14.75638	17.35219	22.46567	25.28395	29.20401	32.29596	40.50907	38.46792	44.04541	41.87653	48.02582	54.73251	53.33027	57.39826	65.1125
						3.027184																			
						4.820351																			
						6.285681																			
		1.784561				3.667731																			
						9.324105					_														
						2.534705 4.798887																			
						3.915747																			
_						5.15898																			
						3.208443																			
						4,54553																			
2.097446	3.090743	4.086874	5.054016	6.108479	6.398103	7.356351	9.619139	11.56769	14.04611	15.89991	18.15821	18.502	17.13536	15.43071	17.87908	19.34922	21.16087	22.87532	27.1726	32.75099	37.0829	41.40124	39.81385	41.15927	46.23183
2.948588	3.441767	2.502658	2.240149	2.399959	2.774634	3.802566	3.711481	4.234389	3.803625	4.413557	5.751128	7.016262	8.145271	9.573994	10.26095	13.13097	15.12627	17.42432	22.88601	25.01526	24.90145	29.36027	35.41514	38.00551	43.99759
2.263004	2.787151	3.501427	3.910668	4.90717	5.91164	6.504109	8.332345	9.468915	9.768599	10.53262	12.20692	14.25708	15.84326	12.1377	14.13156	16.05119	19.17997	19.56224	22.81595	28.54106	27.0035	36.22479	36.29414	41.73401	43.03785
1.651349	2.0595	2.307973	2.756242	3.207152	3.790146	4.190783	5.278558	7.133115	8.575528	9.506565	10.37706	12.19833	13.27257	15.94392	21.06315	22.35721	28.94327	33.85118	39.97045	34.63334	44.92576	52.69362	54.59199	50.54248	41.6775
1.511367						2.840483											13.02254					21.1891			
						7.475509																			
						5.241019																			
						5.062503													20.60007						
						3.277195 2.358325											11.98133								
						6.119959											21.11616								
						4.155884								_											
						1.533413																			
						2.378447							7.167831				15.94679								
1.489838	1.354102	1.926057	2.536678	2.574223	3.194542	4.027893	4.120713	4.970937	5.906712	7.119814	6.715944	7.247876	9.029453	10.16406	12.04697	13.08529	16.54981	12.68541	14.18065	16.26813	20.61339	16.20972	19.11697	22.07456	25.96698
1.85487	1.866459	2.143041	2.607318	3.007866	3.447315	3.058847	3.372844	3.975995	4.824036	6.109786	7.126037	8.590905	9.896439	11.01749	12.87709	15.62959	17.60205	16.50633	19.60079	25.7098	22.41456	26.14889	28.54465	22.71881	24.86904
2.559893	3.303048	3.064808	2.689269	3.222702	3.265218	2.42048	2.870216	2.695885	3.346043	3.176882	3.750761	4.369829	4.090279	5.363224	5.984682	7.083899	7.422579	8.552577	9.986036	12.43964	14.71617	15.29943	18.17983	20.38188	23.32558
1.385211	1.762121	1.439688	1.377648	1.507917	2.042234	2.431503	2.876872	3.555407	3.998471	4.854265	5.84783	7.906397	8.756672	11.75032	14.2588	16.20992	15.02656	13.35387	12.60619	14.04873	15.75225	17.02661	16.10931	18.73506	22.05167
						3.747802																			
						1.949612															13.17939	13.3672			
						2.846972																			
						4.05312																			
						3.649038																			
						2.028624																			
0.972172	0.866739	1.101364	0.827428	1.150897	1.283028	1.49374	1.497501	1.750122	2.144039	2.550493	5.498/33	4.886234	5.40085	4.929432	5.794661	0.454307	7.182197	7.692809	5.8//129	5.506351	0.241/81	0.935/02	0.5561/6	7.204901	6.68378

Figure 8: Heat map for the T Rowe Price Glidepath strategy for a 25-year old worker with zero initial retirement portfolio balance, 2% salary growth and 8% contribution rate. Block bootstrap simulations for 10,000 paths (every 200th path depicted).

40 41 42 43 44 45 46 47 48 48 49 45 46 47 48 48 49 50 51 51 52 53 54 55 56 57 58 59 60 61 62 63 5.09306 5.6445 5.6445 7.22269 11.569 10.74917 12.359 14.3999 16.98902 19.5816 10.0007 24.5239 3.806739 4.064013 4.802918 5.739902 5.023749 5.74762 6.615161 7.705142 8.533577 9.647464 13.76121 15.86246 20.11075 23.36809 29.00136 32.76866 38.73099 44.83705 52.47057 63.51406 75.18838 81.68741 93.31135 114.9326 125.3401 145.602 13.6785 4.187303 6.196736 7.235544 10.60536 13.12286 17.6653 20.63426 19.8655 22.39579 25.38772 22.88449 24.83408 27.19107 33.00551 42.06537 45.78174 52.73268 53.96221 62.09305 59.56331 75.09083 90.48009 87.90653 100.604 128.0525 4,361019 5.178493 6.316119 7.314809 8.365722 7.906957 9.398593 13.16736 17.89441 21.41126 23.60496 28.74231 34.02131 40.05075 47.20315 55.37015 45.81757 49.08023 51.04254 57.51446 66.40462 76.20926 91.39484 107.4566 117.6333 110.029 5.927862 8.041314 8.971839 9.13625 11.01767 14.26576 16.57305 20.20913 22.6831 23.19365 27.22295 32.60464 38.55309 50.26144 58.18118 54.33235 55.62883 62.79136 3.106367 3.030593 4.082543 4.806295 6.639024 8.605149 7.231777 7.99104 9.289275 10.02422 11.79209 13.48385 19.04055 17.76955 23.68036 26.23149 28.34281 35.50878 42.30996 50.41821 54.28232 62.31516 71.76731 74.33798 80.52026 98.4799 2.366334 2.886203 2.415601 2.81283 3.826457 5.286204 6.127674 7.555938 9.069778 10.71578 12.32966 15.5757 19.36248 20.26644 23.21821 21.93119 24.65342 29.93888 29.59012 36.40208 47.68333 55.14216 63.23011 73.24745 77.43023 91.2821
2.652532 2.78522 3.323805 4.245427 5.219568 6.145426 7.939847 8.805846 8.322459 8.652032 9.47765 10.43655 13.07712 16.62166 18.43179 23.23121 29.83421 35.40137 44.21021 55.26429 67.7691 78.19126 91.29911 100.8757 83.63092 88.0075 3.542865 4.740502 5.112521 6.943756 7.924279 9.492321 12.21655 17.1772 20.13494 25.39698 32.64405 35.10225 26.58242 29.37779 32.52155 41.38487 49.51403 53.0497 59.70588 55.94346 64.31286 81.58857 89.18243 99.81633 80.8503 82.82008 13.82446 1.665311 2.089129 3.110769 3.624878 3.403247 4.610172 4.130716 4.999094 6.135306 72.84862 8.761175 10.17829 12.10906 13.06845 15.12281 17.67251 18.97806 24.28367 32.61951 39.67233 47.03425 49.13524 57.67119 67.78324 79.83609 12.262728 2.865602 3.61051 5.189585 6.191839 7.175444 8.335214 9.76087 11.70643 12.61761 14.7831 18.03868 20.03244 24.9927 29.48266 33.86153 34.87891 40.46801 37.54939 36.14232 41.73815 49.09691 56.82916 64.93667 73.00746 77.14637 3.508751 4.125214 4.068238 5.136464 6.753293 8.30739 9.257911 10.01442 11.78813 13.55002 16.10418 2.920816 3.378628 3.885141 4.541145 4.823637 5.385213 6.363089 4.704943 5.479272 5.044739 6.719679 8.296893 10.90046 12.61182 16.62471 17.41773 20.05829 22.03246 26.24745 29.54839 34.2161 36.91657 45.03316 52.58199 61.70621 71.30613 4.171155 4.751311 5.219385 6.81093 8.356777 8.169662 10.17096 12.09902 11.45395 12.9368 16.45283 18.69898 21.51918 23.84349 19.66623 24.94388 28.9464 33.24553 37.75813 42.72338 43.91584 46.62319 52.94231 57.97347 66.1395 2.933316 3.243466 4.066891 4.1414 4.661387 5.50295 5.725905 6.288132 7.985706 9.275192 9.643237 10.63002 12.92964 14.67388 18.04496 22.42089 26.89258 3 20828 4 393356 5.531788 7.234617 6.088798 7.458894 8.989284 11.40631 14.35914 18.44001 13.97287 18.08613 12.97956 14.88833 1.838747 2.351578 3.044209 3.845383 4.599843 5.468412 7.022485 8.686169 7.817524 8.201814 9.479407 11.10127 13.2382 16.4807 28.01176 31.1004 31.6319 37.01234 20.17815 1.371887 15.545 18.57279 21.32109 26.2168 41.05845 45.34887 **5.602785 5.33358 4.781234 5.602785 7.001748 8.900084 12.48243 14.94952 16.14274 18.7155 22.86664 21.28101 22.87152 26.59089 31.17695 37.92056** 45.96914 56.90248 57.74017 67.38041 28.03675 32.75834 29.23341 33.85434 75.62402 70.29047 74.08825 32.75834 29.23341 33.85434 41.24599 47.36518 6.192406 6.937001 7.629366 8.781212 9.479419 10.56789 13.18274 12.6376 14.00132 17.44372 20.13363 19.10373 22.10534 2.479693 2.813634 3.245081 4.197096 4.748795 1.943753 2.535447 2.7614 3.240258 3.578974 4.316583 5.506739 6.780147 8.033337 9.324579 10.39093 11.24673 13.83118 15.15178 16.78227 2.57964 2.973505 3.701549 4.137509 5.303423 6.175613 7.253666 10.1858 11.5874 13.74115 16.72736 15.97813 19.30512 24.909 27.59781 2 224697 1 943753 2 535447 21.7714 23.10884 26 24754 24 47997 26 12795 33 90826 42 39699 50 2063 49 47699 56 7556 2.284279 3.069843 4.21492 4.683018 5.054782 5.766033 5.861415 5.757834 6.271623 5.968352 7.669321 8.915311 10.53917 12.0733 12.74596 15.76343 17.61247 19.82415 2.776267 3.0725 3.716838 5.353261 5.419785 7.517137 9.070194 11.25165 13.09801 9.975436 10.1748 12.25564 13.63041 16.40827 19.2465 21.21759 24.06798 25.68894 22.0964 25.37269 27.70607 31.95719 37.55438 39.30306 50.10246 52.92574 5.05856 6.478543 8.507146 10.08051 11.82008 14.13846 16.74331 12.18918 14.07769 17.1446 3.779424 3.589846 4.565323 5.752655 7.814896 9.719101 13.12544 18.45638 21.39752 24.58471 1.816925 1.722539 1.831974 2.343899 2.973104 3.563455 17.1446 20.23088 25.74174 27.91337 31.0224 29.83113 33.04632 37.66672 41.02833 44.23708 49.8705 19.2997 25.81607 28.28615 32.18836 35.56031 38.91476 38.62206 46.57893 1.755686 2.372489 2.652599 1.941918 1.759103 2.320517 3.011422 2.89806 3.90235 4.334804 5.498613 6.532553 7.323672 8.668113 11.22377 15.29024 16.07399 18.80563 19.6956 18.61334 21.78128 25.68843 24.89158 26.95275 **3.214007** 4.037612 4.936512 4.133709 5.742703 6.311948 7.686985 9.096993 10.62271 14.70133 17.6175 20.94766 18.07497 2.710892 3.838904 2.832125 2.674954 3.960054 4.404862 5.395584 5.304507 6.721504 7.075866 7.810892 8.92196 10.39643 7.953824 9.397856 11.03189 13.25825 15.33379 18.30272 21.08458 27.41367 30.60697 29.58062 36.49113 37.77301 43.19688 1.421823 1.656574 2.07861 2.783742 3.141357 4.106919 5.326878 6.725374 8.31036 9.94725 11.53031 31.46026 15.3022 20.4392 26.36807 25.52702 24.05406 23.25472 26.84926 33.88012 30.08311 30.6461 32.43743 36.5866 43.32596 41.73957 24.05407 32.94197 4.424508 5.48075 6.633399 7.847762 5.46973 6.457603 7.646132 10.9675 12.75501 15.01012 17.7044 16.52675 18.21409 16.87514 18.76951 23.06454 25.01782 28.80157 30.02153 23.98052 29.19116 33.17824 38.00622 39.97994 1.853332 1.960537 2.438917 3.078295 2.238113 2.920186 2.624113 3.311195 4.187739 4.732587 5.582447 7.261772 6.960544 7.858789 8.983999 8.096684 10.59333 12.93291 12.57091 14 5577 18 04388 19 78985 25 89485 29 99773 37 42824 38 71233 2299183 2.656795 3.339647 3.950881 4.148812 4.529762 4.905249 6.055019 7.242021 8.418879 7.415247 6.031841 8.300977 8.5552476 9.6715 11.4576 13.02173 13.48511 14.85235 16.57461 17.60714 19.44149 22.26825 28.99737 33.26446 37.30465 2.37793 2.987938 2.667407 2.281098 1.967232 2.46938 3.244317 3.761912 2.747253 2.476933 3.465647 4.55205 5.551305 6.452647 6.666963 7.703742 9.819709 12.43786 14.07152 15.20022 2.81728 3.740016 2.778279 1.970048 1.818155 2.274599 3.086257 4.151062 4.134795 4.736939 6.598212 6.497677 7.111435 8.192209 11.44867 11.10751 13.0888 14.98523 17.57073 19.54708 1.81946 19.347 23.33389 28.0766 30.98273 35.2496 2.414698 2.817728 3.740016 2.778279 1.970048 1.675793 1.70023 2.194562 1.954826 2.414784 2.858076 2.949392 3.550787 4.027055 4.958926 5.801917 5.276504 6.505246 6.137892 7.660853 10.04507 12.3097 14.72181 16.11145 19.32498 22.09683 25.1103 23.7171 24.86813 29.83052 32.47523 3.837977 4.411584 4.841511 5.649644 6.967084 1,560699 1,996521 2,191007 2,959704 3,58555 3,618204 4,331805 3,886162 5,105182 6,275289 8,161695 8,336953 10,2244 11,24202 13,40515 15,42455 17,35949 20,46788 22,8349 24,02957 22,63379 26,21839 28,50034 31,40409 25,48129 29,85183 4.570387 4.679271 5.280889 5.845259 6.427897 7.201846 5.270919 7.249069 8.469219 9.568259 10.47884 9.759104 3.836597 5.058873 6.416795 6.566768 6.746678 8.013104 9.033108 11.01802 12.63462 14.6813 17.02703 15.61531 2.635157 2.494098 2.945259 3.481001 3.867368 3.645494 4.03883 14.6813 17.02703 15.61531 16.73887 17.43712 20.43183 22.20163 24.11735 28.01177 27.3388 3.416994 4.498234 4.970402 5.695876 7.308625 8.557387 10.2829 7.302957 8.26447 7.838516 8.950416 9.216841 9.455364 12.00979 14.51991 16.64858 14.87999 20.01924 15.00213 16.23996 3.88894 4.713928 5.183315 6.589287 8.143493 9.298532 10.18121 10.96213 12.6457 13.83872 13.85353 16.2326 21.58467 17.99255 13.54205 14.73413 15.00356 16.86173 20.87216 21.00255 23.63348 25.4863 2.059854 2.471309 2.955649 3.315917 2.629214 3.191153 4.170228 5.074309 2.934753 3.440196 4.007861 3.815304 6.47522 3.541557 7.53808 6.452457 7.495882 8.772895 7.163016 8.073265 10.84537 13.06573 12.66653 14.02761 17.96939 17.26724 20.24283 5.83098 4.986179 6.782635 7.593496 9.579588 9.261117 11.21345 11.06293 11.99286 10.88832 11.77411 13.53975 14.74964 17.96939 17.26724 20.24283 22.26749 21.04021 23.78361 6.255523 2.555305 4.62501 1.419918 1.834097 2.366155 3.181485 3.853807 3.523589 4.237535 4.524903 5.520865 5.480723 7.186792 8.322079 10.02497 7.497854 7.91146 9.922698 9.816919 9.002479 10.29671 12.05541 14.57509 16.00016 19.83745 22.38145 26.69942 20.7197 6.54789 6.745877 6.519785 7.690411 9.781379 9.002199 10.6963 9.763121 12.36435 14.71638 11.49491 12.84962 14.62901 17.79835 19.9678 1.665727 1.772024 1.963024 2.50797 2.995673 3.497982 4.604316 5.93221 1.76747 1.483497 1.776725 1.643536 1.86348 2,14835 2,403761 2,209845 2,841916 3,639615 4,276755 4,084622 4,832668 5,682146 7,042933 9,151415 9,379513 10,3687 9,729875 11,39141 8,710203 9,433532 10,07882 12.0489 13.96713 18.1497 2.56874 2.865117 3.59921 4.299445 5.332306 5.504874 5.959115 6.162307 7.097592 8.393966 6.559464 7.044732 7.554642 8.730236 10.99619 11.9754 4.38456 4.758541 5.015111 5.829983 6.40793 8.425818 9.708407 11.73375 13.85412 17.18058 12.6054 13.31066 14.10534 10.94837 9.813075 11.37637 2.23682 1.94259 2.370031 2.796571 2.646922 3.108651 3.615581 12.1061 13.92478 15.3203 6.507453 7.450549 8.732562 10.00968 10.51783 11.08401 10.59405 2.11925 2.512683 2.349479 2.969615 2.637164 3.036379 3.428138 3.853047 4.767432 4.634442 4.567206 6.02117 4.552791 6.224472 6.921663 8.048124 9.417327 10.60215 0.609922 0.583268 0.760833 0.895471 1.256578 1.369319 1.661765 1.727064

Figure 9: Heat map for the T Rowe Price Glidepath with Real Estate Blend strategy for a 25-year old worker with zero initial retirement portfolio balance, 2% salary growth and 8% contribution rate. Block bootstrap simulations for 10,000 paths (every 200th path depicted).

Figure 10 and 11 show the pair of heat maps relating to the MarketGlide Benchmark glidepath, the former without real estate blend strategy and latter with real estate blend strategy. Before comparing the two to each other, it is worth briefly highlighting the main difference between these glidepaths and those of the T Rowe Price glidepaths shown in Figures 8 and 9. Due to the overall higher allocation to stocks in the T Rowe Price glidepath (cf. Figure 2) both heat maps transition to success (green) marginally earlier than the MarketGlide Benchmark equivalent. In effect, the additional return earned from equities and the associated compounding, allows the plan participant to achieve success earlier.

40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65
3.966069	4.5253	3.987198	4.688968	6.629468	7.198239	8.456167	10.7009	13.01964	14.0464	14.70087	19.42541	25.42401	31.23114	36.94508	41.24381	48.07347	61.34731	75.00034	80.56658	87.73143	104.1479	113.8777	142.9983	162.5754	195.7862
3.808061	4.2565	4.677287	5.795495	6.546105	9.435105	11.75102	15.76915	16.01696	19.6681	18.19822	21.59935	24.94813	27.08075	30.75012	37.16029	46.59071	49.01196	58.08718	62.45925	72.96049	78.16772	84.81252	96.60181	109.66	136.0787
3.192828	4.37885	5.671717	7.192564	9.47094	12.17377	14.72798	16.07666	18.45228	19.83895	23.22166	23.03475	27.18156	31.89872	37.29227	38.57429	44.7843	50.80824	47.0966	55.32625	58.12578	60.86343	70.56751	87.99845	102.8319	110.421
2.782725	3.115214	3.853325	4.801	6.966356	8.172859	10.81769	11.29906	14.87967	13.70197	14.75511	17.47953	19.16222	17.57956	21.366	22.73901	28.47392	30.586	36.80824	49.6481	58.40298	68.08457	75.43141	82.00477	85.91478	100.7155
3.557409	3.928316	4.903353	6.938552	6.272843	7.762241	9.503357	11.80493	13.37019	15.35661	17.42972	19.06452	24.29273	31.36372	30.86043	35.27498	37.88161	36.04276	42.15519	44.53302	55.35724	57.9716	62.67989	72.46994	92.46785	93.46855
2.392835	2.457206	3.511571	4.365055	6.220904	7.718335	8.869205	11.12309	14.23097	19.44376	23.18027	24.69321	29.55292	32.32898	41.52602	46.95045	36.69652	38.70432	45.53644	50.0399	55.95498	52.33533	58.51718	65.37125	74.89047	85.02154
																	39.54298								81.7646
																	35.68101								
																	27.69854								
																	21.64193								
				2.280821													25.36035								
																	17.55092								
																	23.01272								
																	14.85861								
		2.085376															19.40185								
																	22.19182 23.01841								
				3.846563													20.50744								48.99039
																	15.98722								
				2.98397														20.46658					33,65659		
				3.708032															20.917						
				3.50584								11.42577													
																	15.15753								
_																	13.12525								
																	14.48021								
																	21.58727								38.0352
																	17.11167								
2.907839																	22.51848						33.662		36.0932
																	16.93959								
																	17.81186								33,41907
2.742391	3.33933	3.600988	4.651089	6.429979	7.09069	6.431598	6.328056	7.934221	7.484477	5.463945	6.081625	7.385826	8.872253	10.84057	12.64375	14.57417	16.49395	17.25931	18.79466	20.09147	21.64066	20.12176	20.58439	26.32664	32.24305
1.475776	1.73879	2.04257	2.44221	2.513138	2.81339	3.253386	3.851421	4.272987	5.258762	6.809288	8.769986	11.51601	10.40877	11.51184	12.98201	16.28727	17.25056	21.4049	21.08486	23.9095	25.78295	26.09037	26.69161	30.28469	31.06827
1.790835	2.31453	2.578074	2.98493	2.811263	3.076977	3.522052	3.275904	3.644594	4.11454	5.682298	6.452011	7.302535	7.591562	8.890582	11.07606	10.37166	13.27224	14.82225	15.00501	16.34758	18.17814	19.37747	22.26833	25.98411	30.09876
1.753514	2.287104	2.743642	2.769469	1.953067	2.191873	2.701151	3.577317	3.090494	3.309522	3.310539	3.943139	5.052837	5.436822	6.04586	7.920293	9.924315	11.95925	12.66705	13.87293	16.33966	18.73947	23.80069	26.50413	27.53539	29.37928
1.089536	1.358929	1.680932	1.847551	2.131681	2.464899	3.198346	3.53305	4.281547	4.734185	5.471812	6.262566	7.455721	8.282004	10.2787	8.272278	8.282307	9.873074	11.27549	13.34591	14.6083	15.18685	19.27161	21.42015	26.68694	28.91239
1.042919	1.092681	1.434286	1.765633	2.227327	2.531738	3.051948	4.095528	5.055932	6.23057	6.853579	7.037496	6.017623	6.154867	6.773577	7.623475	8.370323	8.017123	8.867867	9.531847	10.97634	12.91275	15.52153	19.65804	25.23115	28.33079
1.829902	1.379323	1.609515	1.930882	2.337016	2.609299	2.843325	2.564976	3.130949	3.543042	4.078585	4.391172	5.10996	4.936084	5.937919	7.288077	8.587803	8.843156	11.83689	14.22611	15.37022	17.75574	20.42082	22.75759	25.64811	27.50745
2.822865	3.260044	4.001865	5.26602	6.998641	5.38946	4.923794	5.167094	5.738739	6.324767	7.194769	7.385731	7.785915	9.031541	10.55089	11.93928	14.24969	14.62866	17.96927	17.08762	19.33106	21.26826	22.39264	22.2918	23.22569	26.26237
1.419427	1.700435	2.128277	2.61718	2.426896	2.949575	3.614676	4.084723	3.810133	5.427894	6.028564	7.082033	8.221278	7.51326	8.038089	8.845247	9.079404	10.79086	11.82996	12.24525	13.2025	12.5201	15.92887	20.54431	24.81327	25.3109
																	12.01921								24.06505
																	11.06321								23.34737
																	15.80041								
																	13.57871								21.2405
																	15.78182							18.1381	19.9709
																	10.90272								19.2022
																	11.62313								17.22434
																	8.145916								15.22902
																	5.628142								
																	7.087622								
																	5.943845								
1.321259	1.506488	1.753189	2.124963	2.372201	2.121545	2.378103	2.339511	2.609902	3.019194	2.274033	2.140372	2.401163	2.68357	2.756363	3.169331	3.619816	3.596492	3.633598	3.495322	2.932521	2.489859	2.142171	2.151515	2.183378	2.523023

Figure 10: Heat map for the MarketGlide Benchmark Glidepath strategy for a 25-year old worker with zero initial retirement portfolio balance, 2% salary growth and 8% contribution rate. Block bootstrap simulations for 10,000 paths (every 200th path depicted).

By visually comparing Figures 10 and 11, the addition of real estate to the MarketGlide Benchmark glidepath has two main effects. First, the change in asset class exposure appears to have caused a slight delay in the transition to success (green). However, as with the Balanced and T Rowe Price glidepath designs, the addition of the real estate blend exposure has assisted in delivering a smoother transition to success through diversification. Second, as we also saw from Table 4, exposure to the real estate blend strategy improves downside characteristics.

40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65
							9.845983																171.433		
							6.660605																		
							14.16292																		
							10.63855 7.79568																		85.7617
							7.527626																		
							7.390347					18.02712													
							6.242427																		
							6.559937															48.02547			66.3565
2.226637	2.600952	3.548319	4.101905	4.682825	5.564023	6.534548	6.66005	7.343751	8.61092	10.15774	11.03061	10.89349	14.45418	16.60285	17.33116	19.06366	21.90702	25.89868	29.54287	31.69896	38.07346	46.54502	54.21719	56.66157	63.2899
2.838134	3.704663	4.249061	4.771388	6.026971	7.665086	8.742224	10.33089	12.85795	11.79487	13.59262	15.40037	18.45838	16.21332	17.19042	18.30802	21.66454	23.9264	29.04512	33.48786	39.90841	33.30248	39.26181	49.479	55.37488	61.04076
1.343905	1.527621	1.817146	2.407324	2.78147	3.540176	4.276637	5.214093	6.256943	7.388845	8.963849	10.22541	12.01603	13.25764	15.493	17.65455	22.1267	25.73525	28.96564	31.06202	34.67739	39.53717	45.04569	50.54498	58.8106	59.92195
							8.966327					19.34094													
							7.531223																		
							5.130999																		
							3.246439																		51.3334
							6.428399																		
							4.933968 4.925144																		
							3.884283																		
							2.827303												18.61199						44.80302
1.196162							3.49776																		
							5.101878																		
2.361302	2.774548	3.493041	3.173552	2.357804	3.072066	4.479469	5.322597	7.111681	8.193028	8.435929	11.24311	13.49351	16.16864	17.58251	23.21402	21.09116	16.37798	20.3854	23.82512	27.24774	26.35633	29.34867	32.13974	36.10096	40.73156
2.71142	3.486892	3.141267	4.029526	5.037548	6.168612	6.717843	7.344219	5.262942	4.9068	6.175837	7.02647	8.865611	9.119464	11.14112	12.26892	13.43591	15.30953	16.97303	19.98042	22.83987	30.24131	35.79563	35.93312	41.03776	39.61886
2.650029	3.139288	3.539036	2.599862	2.225528	2.903083	3.190479	3.035755	3.829509	4.879408	5.661444	6.870123	8.107458	6.799715	8.154617	7.289442	8.418983	9.851794	12.77641	16.12405	17.61194	20.3307	24.22758	27.24361	30.2765	38.57531
1.372422	1.92843	2.625434	3.152725	3.59893	4.599853	5.384384	6.201147	7.236471	7.795815	5.832891	6.980315	7.894823	9.100049	10.57026	11.76816	12.79721	14.74145	16.04143	18.0573	20.4054	23.22185	29.0925	31.17359	34.86954	37.4333
1.799531	2.074218	2.48694	2.788444	2.604647	3.34172	3.731839	4.427684	5.113094	6.033016	6.761932	6.940879	8.018263	9.263623	10.62213	12.13128	15.43501	18.6435	14.85217	17.01827	20.10898	22.92566	24.51053	27.27055	31.89358	36.16458
							4.353966																		
							3.10356																		
							8.697874																		
							6.039146																		
							3.186752 7.039327																		
							3.82354																		
							4.454293																		
							2.164088										_		11.80389						
	2.543353						4.882429																		
1.758391	2.1956	2.595164	3.031066				4.460352																		
2.52045	2.830968	3.349367	3.88413	4.056371	4.911709	6.413761	7.058405	7.779435	8.926994	10.09416	12.28246	14.27588	18.72219	21.84184	21.28601	24.86631	28.38007	27.81041	21.98599	25.46862	25.05348	22.26067	22.00473	23.37451	24.56521
2.433776	2.83804	3.49499	3.127728	4.14914	4.79178	5.403882	6.015336	7.374137	6.765724	6.514264	7.076808	8.353281	9.625913	11.50882	10.72715	12.26374	12.87281	11.89781	13.62474	13.58659	16.1778	18.45401	20.54991	21.83039	23.89294
1.025844	1.201685	1.502432	1.882271	2.305919	2.137876	2.534427	3.262182	3.956504	4.674746	5.167249	3.826331	4.598635	6.396291	7.439165	6.683365	7.790248	9.229047	10.51667	12.2619	12.6723	15.8599	17.58563	20.02396	20.31998	22.51383
1.513473							4.296505																		
1.869175							3.264145																		
							4.490975															13.3207		16.9466	18.98671
1.73219							5.306453																		
							2.456047																		
							4.473794 3.071689																		
1.540341							3.0/1689 2.389037															6 200201			
0.875445							2.389037																		
0.875445	1.203204	1.15009	1.441004	1.092599	2.290112	2.0093/1	2.002263	1.0000329	1.010023	1.900005	1.795747	2.02006/	3.14U06b	2.513213	2./113/2	2.513000	2.000056	2.400/03	2.90099	3.196705	3.70256	4.05243	4.151035	4.023002	3.142202

Figure 11: Heat map for the MarketGlide Benchmark Glidepath with Real Estate Blend strategy for a 25-year old worker with zero initial retirement portfolio balance, 2% salary growth and 8% contribution rate. Block bootstrap simulations for 10,000 paths (every 200th path depicted).

In this analysis, we have taken some typical DC plan designs, comprised of stocks and bonds, and constructed a hypothetical alternative real estate blend strategy comprising a 50/50 blend of listed and unlisted real estate investments. We have subjected all asset allocation designs to the same analysis and looked at outcomes which plan participants themselves would have a reasonable chance of experiencing. We find that the addition of a relatively modest allocation of 5% listed real estate (to replace equities) and 5% private, unlisted real estate (to replace bonds) improves the downside performance of a number of DC plan designs without materially impacting expected outcomes.

5 | CONCLUSION 31

In this study, we set out to understand how an investment allocation to both listed and unlisted real estate performs in a defined contribution portfolio context. We took several extant portfolio designs – both target risk and target date – and considered their performance both with and without a blend of listed and unlisted real estate.

This research is of particular importance to the risk-return profile of DC plans as the future cornerstone of retirement savings for the global workforce. As plan sponsors are acutely aware, many plan participants face a classic asset-liability mismatch in retirement that is, the need to fund relatively short- and medium-term retirement spending needs with a longer term investment strategy. Recent financial history provided a living case study of the perils facing retirees and near-retirees ignoring the mismatch between the duration of retirement assets and liabilities.

As Milevsky (2006), Bianchi et al. (2014) and Drew et al. (2014) have illustrated, the odds of portfolio ruin in retirement are highly sensitive to the returns the investor earns decade by decade. Path dependency matters greatly. Our results illustrate that adding real estate assets to DC plans assists plan participants through the critical conversion phase; that is, converting from savings (accumulation) to retirement income (spend down). As the title of this study suggests, allocating real estate assets to DC plan investment portfolios can provide a path to better retirement outcomes.

In measuring performance and risk, we had the choice between traditional measures of performance, or ones that might be more informative to plan participants. We chose the latter as more meaningful indicators of the "success" of DC plan investment portfolios in general, and the marginal impact of real estate allocations in particular.

Consistent with similar studies (e.g. Esrig et al., 2013), we found that DC investment portfolios, such as target date, target risk or balanced strategies, with a relatively modest 10% allocation to an equally-weighted blend of listed and unlisted real estate:

Achieved similar expected outcomes and in some cases better results when compared to portfolios without real estate;
Did so with better tail risk characteristics; and
Achieved success to a similar extent as their non-real estate alternative portfolios, but with a smoother path to success.

This last point is particularly important for DC plan sponsors. A portfolio strategy that delivers a smoother transition to success contributes to improved long term participant behavior, where it is possible to help DC investors avoid adverse responses to temporary market setbacks (e.g. switching out of risky assets and moving out of the market altogether after a significant market down turn). This gradual transition increases the likelihood that participants will "stay the course" and achieve success.

This study, therefore, finds strong support for allocations to real estate in DC plan designs. Given the myriad of retirement risks faced by plan participants (e.g. market, inflation, growth, tax, interest rate, to name but a few), the diversifying characteristics of real estate can improve portfolio efficiency and retirement outcomes.

Andonov, A., N. Kok, and P. Eichholtz. "A Global Perspective on Pension Fund Investments in Real Estate." The Journal of Portfolio Management, Vol. 39, No.5 (2013), pp. 32-42.

Association of Superannuation Funds of Australia. "Superannuation Statistics – February 2014" (2014). Retrieved from: http://www.superannuation.asn.au/resources/superannuation-statistics/.

Australian Prudential Regulation Authority. "Superannuation Prudential Standards" (2014). Retrieved from: http://www.apra.gov.au/Super/PrudentialFramework/Pages/superannuation-prudential-standards.aspx.

Baker, A., Logue, D. and J. Rader. "Managing Pension and Retirement Plans: A Guide for Employers, Administrators, and Other Fiduciaries." (2005) Oxford University Press, New York.

Basu, A., A. Byrne, and M. Drew, "Dynamic Lifecycle Strategies for Target Date Funds." Journal of Portfolio Management, Vol. 37, No. 2 (2011), pp. 83-96.

Basu, A. and M. Drew. "Portfolio Size Effect in Retirement Accounts: What Does it Imply for Lifecycle Asset Allocation Funds?" Journal of Portfolio Management, Vol. 35, No. 3 (2009), pp. 61-72.

Basu, A. and M. Drew. "The appropriateness of default investment options in defined contribution plans: Australian evidence." Pacific-Basin Finance Journal 18:3 (2010), pp. 290-305.

Bianchi, R., M. Drew, M. Evans and A. Walk. "The Two Faces of Investment Performance and Risk." JASSA The Finsia Journal of Applied Finance, No. 1 (2014), pp. 6-12.

BlackRock, Inc. "BlackRock Global Allocation Fund" (2014). Available from: http://www.blackrock.com/investing/products/227680/ blackrock-global-allocation-institutional-class-fund.

Booth P. and Y. Yakoubov. "Investment Policy for Defined Contribution Pension Scheme Members Close to Retirement: An Analysis of the 'Lifestyle' Concept." North American Actuarial Journal, Vol. 4 No. 2 (2000), pp. 1-19

Brounen, D., M. Prado, and M. Verbeek. "Real Estate in an ALM Framework: The Case of Fair Value Accounting." Real Estate Economics, Vol. 38, No. 4 (2010), pp. 775-804.

Chun, G., B. Ciochetti, and J. Shilling. "Pension-Plan Real Estate Investment in an Asset-Liability Framework." Real Estate Economics, Vol. 28, No. 3 (2000), pp. 467-491.

Drew, M, P. Stoltz, A. Walk and J. West. "Retirement Adequacy through Higher Contributions: Is This the Only Way?" Journal of Retirement, Vol. 1 No. 4 (2014), pp.57-74.

Efron, B. "Bootstrap methods: Another look at the jackknife." Annals of Statistics 7 (1979), pp. 1-26.

Esrig, D., S. Kolasa, and L. Cerreta. "Assessing the Impact of Real Estate on Target Date Fund Performance." The Journal of Portfolio Management, Special Real Estate Issue (2013), pp. 144-155.

Fabozzi, F., Focardi, S. and P. Kolm. "A Simple Framework for Time Diversification." Journal of Investing 15:3 (2006), pp. 8-17.

Fama, E. "The Behavior of Stock-Market Prices." The Journal of Business 38 (1965), pp. 34-105.

Guo, B. and M. Darnell. "Time Diversification and Long-Term Asset Allocation." Journal of Wealth Management 8:3 (2005), pp. 65-76.

Hickman, K., Hunter, H., Byrd, J., Beck, J. and W. Terpening. "Life Cycle Investing, Holding Periods and Risk." Journal of Portfolio Management 27:2 (2001), pp. 101-111.

Hudson-Wilson, S., J. Gordon, F. Fabozzi, M. Anson, and S. Giliberto. "Why Real Estate?" The Journal of Portfolio Management, Vol. 31, No. 5 (2005), pp. 12-21.

IPE International Publishers Ltd. "IPE European Institutional Real Estate Survey" (2013). Retrieved from: whitepapers.ipe.com/resources/view.php?data...name=eires2013.pdf.

Jarque, C. and A. Bera. "Efficiency tests for normality, homoscedasticity and serial independence of regression residuals." Economic Letters 6 (1980), pp. 255-259.

Jarque, C. and A. Bera. "Tests for Normality of Observations and Regression Residuals." International Statistical Review 55 (1987), pp. 163-172.

Jensen, G., J. Mercer, and R. Johnson. "Business Conditions, Monetary Policy and Expected Security Returns." Journal of Financial Economics, February (1996), pp. 213-237.

Kritzman, M. "Puzzles of Finance." (2000) New York: John Wiley & Sons, Inc.

Kritzman, M. and D. Rich. "Beware of Dogma: The Truth about time diversification." Journal of Portfolio Management 24:4 (1998), pp. 66-77.

Künsch, H.R. "The Jackknife and the Bootstrap for General Stationary Observations." The Annals of Statistics 17:3 (1989), pp. 1217-1241.

McMurdy, K. "Target Date v. Target Risk Funds: Is Either One Better for Your Plan?" (2009) Mimeo. Available from: http://employeebenefits.foxrothschild.com/2009/11/articles/plan-administration/target-date-v-target-risk-funds-is-either-one-better-for-your-plan/.

Mandelbrot, B. "The Variation of Certain Speculative Prices." The Journal of Business 36 (1963), pp. 394-419.

Mandelbrot, B. "The Variation of Some Other Speculative Prices." The Journal of Business 40 (1967), pp. 393-413.

Milevsky, M. "The Calculus of Retirement Income - Financial Models for Pension Annuities and Life Insurance: (2006). New York: Cambridge University Press.

NextCapital Group, Inc. "MarketGlide Target Date Indexes Methodology Overview" (2014). Retrieved from: https://www.marketglide.com/documents/marketglide_methodology.pdf.

Olsen, R. and M. Khaki. "Risk, Rationality, and Time Diversification." Financial Analysts Journal, 54:5 (1998), pp. 58-63.

Politis, D. and H. White. "Automatic block-length selection for the dependent bootstrap." Econometric Reviews 23:1 (2004), pp. 53-70.

Poterba, J.M., S.F. Venti, and D.A. Wise. "Informing Retirement-Security Reform, 401(k) Plans and Future Patterns of Retirement Saving." The American Economic Review 88(2) (1998), pp. 179-184.

Rachev, S., Stoyanov, S. and F. Fabozzi. "Advanced Stochastic Models, Risk Assessment, and Portfolio Optimization" (2008). Hoboken: John Wiley & Sons Inc.

6 REFERENCE LIST

Ruiz, E. and L. Pascual. "Bootstrapping Financial Time Series." Journal of Economic Surveys 16 (2002), pp. 271–300.

Siegel, J. "Stocks for the Long Run: A Guide to Selecting Markets for Long-term Growth" (1994). Burr Ridge, Illinois: Irwin Professional Publishing.

The Vanguard Group. "Vanguard Product Profile: Balanced Index" (2014). Available from: https://institutional.vanguard.com/VGApp/iip/site/ institutional/investments/productoverview?strategy=297834224.

Towers Watson. "Global Pension Assets Study" (2014). Retrieved from http://www.towerswatson.com/en-AU/Insights/IC-Types/Survey-Research-Results/2014/02/Global-Pensions-Asset-Study-2014.

T Rowe Price. "Find a Retirement Fund" (2014). Retrieved from: http://individual.troweprice.com/public/Retail/Mutual-Funds/Target-Date-Funds/Find-A-Retirement-Fund?year=1953.

Heat Maps for 40-year old worker with starting portfolio value = \$100,000

100% US Stocks

40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65
1.132237	1.370555	1.62149	2.213678	3.205889	4.809833	5.873098	8.217057	10.30674	11.7605	12.62518	19.27153	16.46702	20.67285	30.6694	41.66913	53.1259	77.32229	109.9105	147.9088	171.0963	169.9043	149.2949	176.0068	209.8584	271.1503
1.132237						6.93495																		182.0776	
	1.599445																								
	1.449333																								
	1.498781																								
7 7	1.686819																								
	1.686819																		41.37336						
	1.410174																								
	1.440869																								
1 1	1.391185																								
	1.623575																								
	1.557857																								
	1.086713																								
	1.498612													_											
	1.512661																								
	1.501583																								
	1.306419														_										
	1.356409																							49.32314	
	1.389548																								
	1.284163																								
	1.420633																								49.136
	1.384633																								
	1.471355																								1
	1.473416																								
	1.639571																								
	1.365941																		32.9521						
	1.055366																								
	1.50137																								
	1.402034																								
	1.394773																				18.29704				
	1.328163					1.968284																			
7 7	1.439773					2.965483																			
	1.513542																								
	1.438105																								
	1.371944																								
1.132237	1.218348	1.30896	1.643405	2.203619	2.789752	3.99085	4.100247	5.169733	5.9698	8.097097	8.349256	7.806352	9.813108	12.41478	8.094297	7.478332	8.798032	7.187372	9.457968	8.116996	9.663959	12.6343	15.44718	22.13847	25.86881
	1.498511					3.653142								-											
1.132237	1.384633	1.230632	1.462581	1.794836	2.366438	3.102099	3.07499	3,476819	3.91207	4.533608	5,490479	3.767717	5.652514	6.420556	7.734757	6.43952	8.350589	9.596517	14,72925	10.03793	8.547519	10.03538	13.1698	19.39644	24,27503
1.132237	1.673878	2.191718	2.491747	3.221795	2.773055	3.115885	3.739095	4.520425	6.160853	7.080093	8.903944	10.61115	12.65182	11.92368	10.62642	15.03534	14.01747	11.35117	12.12811	18.53067	22.5328	20.70229	23.97916	28.66641	23.03715
	1.405504																								
	1.473416																								
1.132237	1.311005	1.222189	1.428438	1.836654	2.058273	1.941187	2.118498	2.8663	3.479223	3.642868	4.82072	5.621059	8.212309	8.152745	11.18852	12.4748	13.66593	15.87451	10.19723	13.52092	12.17577	13.96545	11.96009	13.7449	18.47295
	1.623407																		13.37248					15.21411	17.51056
1.132237	1.579058	1.900326	1.716913	1.743095	1.552123	1.850555	2.279209	2.788661	3.195474	3.169234	3.302813	4.252717	4.005652	4.684108	5.535113	3.585958	3.426046	4.162177	4.656262	6.376962	7.739896	7.162773	10.98701	14.81999	15.88498
1.132237	1.319814	1.671986	1.496737	2.020061	1.951289	2.314696	2.858482	2.351899	2.482665	2.778019	3.94406	4.62535	5.084649	4.525822	5.051297	6.910553	9.710535	10.44636	11.24955	12.39439	9.380025	6.631525	10.1793	12.30532	14.36416
	0.965923																								
	1.402034																								
	1.325341																								
	1.551259																								
	1.574038																								

Key takeaway: Positive outcomes with some volatility and tail risk.

100% US Bonds

40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65
1.132237	1.370555	1.62149	2.213678	3.205889	4.809833	5.873098	8.217057	10.30674	11.7605	12.62518	19.27153	16.46702	20.67285	30.6694	41.66913	53.1259	77.32229	109.9105	147.9088	171.0963	169.9043	149.2949	176.0068	209.8584	271.1503
	1.72643																				131.4985				
																					57.61181				
																					62.10098				
																					68.44818 50.65424				
	1.686819																				54.06185				
																					42.79046				
																					52.71362			70.9125	
																					35.43497				
																					58.67173				1
																					68.83318				
1.132237	1.383854	1.72767	2.319677	2.536429	2.510085	2.983553	4.097056	4.916805	4.102207	5.02898	6.738649	8.231194	9.479511	8.548394	10.65951	14.44547	12.58329	17.5487	23.5506	29.24362	36.50572	40.56693	45.40682	61.29274	72.53992
1.132237	1.086713	1.523948	2.053256	2.504069	2.767424	3.526351	4.59371	5.383114	4.592536	6.212955	8.43393	9.963333	11.7106	14.18217	14.67775	17.89747	21.32721	23.72411	28.82282	40.46624	55.02563	38.56222	48.47083	45.52514	68.33711
1.132237	1.498612	1.95549	1.7176	1.82448	2.536015	2.753002	2.781426	2.361485	3.663739	4.716701	5.985021	6.882114	7.857368	8.625916	10.78155	13.51955	15.1175	15.38923	17.51579	22.25431	29.55211	34.69274	39.06892	50.11607	63.93439
1.132237	1.512661	2.123666	1.404852	1.92716	1.641079	1.863167	2.271071	2.72482	3.731328	5.128507	6.932192	9.071311	10.09018	11.75933	12.94586	16.38897	22.41872	28.90998	32.88875	41.34712	52.55793	43.79451	43.21536	57.88821	61.67253
1.132237	1.501583	1.680465	2.112969	2.91738	3.740062	4.15293	5.285078	6.449922	7.179569	9.817529	11.96795	9.744258	11.3565	14.88764	17.25411	23.15202	27.73907	29.6512	40.38509	29.93425	33.19602	28.44582	37.19263	47.46861	60.33374
																					23.37079				
	1.356409																							49.32314	
																					21.59523				
																					20.68404				
																					21.61684 23.12592				
																					18.08501				
																					17.88579				
																					23.7293				
																					43.33109				
																					14.36408				
1.132237	1.50137	1.730169	2.070114	2.322727	2.035393	3.049159	3.617316	3.445101	3.296097	2.264401	2.355349	2.762152	3.491846	4.299592	6.247674	6.931846	8.983184	10.79812	12.0717	13.4153	16.46373	20.86433	26.66518	31.24305	36.49835
1.132237	1.402034	1.802562	2.059205	2.464945	2.910366	3.585322	4.191656	4.675172	7.181447	9.531878	10.57998	14.06402	10.62319	14.07285	19.88479	23.68555	28.05034	20.80723	24.59485	27.77422	36.4204	41.93038	34.60484	30.16094	34.93574
1.132237	1.394773	1.953612	2.340362	3.057036	4.009169	5.869292	6.99061	6.862694	7.618471	8.31249	6.90115	8.073871	7.213064	9.723572	10.75055	11.93572	7.785539	8.608135	12.98834	15.5549	18.29704	21.00785	24.59244	29.62378	33.0102
1.132237	1.328163	1.639892	1.808099	2.1087	1.469484	1.968284	1.673849	2.249726	2.574025	2.902583	2.465182	2.76128	2.749936	4.022324	4.992993	7.47034	10.49068	8.465951	10.10236	13.23648	15.77677	18.9956	19.32642	22.59211	31.50219
1.132237	1.439773	1.613347	1.8345	2.558238	3.40964	2.965483	2.492981	2.915831	3.385899	4.488427	5.386382	6.779943	8.876517	11.33911	13.18497	15.49362	16.9457	14.79527	15.81286	17.18162	25.84331	32.83166	27.14679	26.99507	30.64937
																					29.50768				
																					22.48187				
																					16.37495				26.87113
	1.218348																				9.663959 12.08646				
																					8.547519			19.39644	
																					22.5328				
																					15.71909				
																					12.08406				
																					12.17577				
1.132237	1.623407	1.932538	1.272458	1.518426	1.781053	2.607711	3.118518	3.600678	2.374722	3.026789	4.090408	4.521168	5.4782	6.099623	7.421465	6.330565	7.935625	10.698	13.37248	17.13065	12.05199	16.07012	13.0856	15.21411	17.51056
1.132237	1.579058	1.900326	1.716913	1.743095	1.552123	1.850555	2.279209	2.788661	3.195474	3.169234	3.302813	4.252717	4.005652	4.684108	5.535113	3.585958	3.426046	4.162177	4.656262	6.376962	7.739896	7.162773	10.98701	14.81999	15.88498
1.132237	1.319814	1.671986	1.496737	2.020061	1.951289	2.314696	2.858482	2.351899	2.482665	2.778019	3.94406	4.62535	5.084649	4.525822	5.051297	6.910553	9.710535	10.44636	11.24955	12.39439	9.380025	6.631525	10.1793	12.30532	14.36416
																	-				14.48604				
																					6.694915				
																					7.507483				
																					3.403809				
1.132237	1.574038	2.310776	2.812418	2.521229	1.612578	2.520876	3.241085	3.80455	3.321338	4.001498	3.379566	3.157758	3.542384	4.196557	4.724346	4.854483	5.393482	4.806755	4.023069	2.76376	1.833044	2.12644	2.623609	3.236593	3.655149

Key takeaway: 100% Bond portfolio struggles with success defined as 12x RWR.

100% Real Estate Blend

40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65
1.132237	1.357933	1.583374	1.899591	2.123646	2.482662	3.242409	3.838691	4.529837	5.44114	6.333065	7.292439	8.278199	9.7144	10.71376	11.82965	14.67175	17.96567	22.84273	24.99741	29.36836	32.52509	35.18055	47.05425	53.98102	59.36927
	1.559179																								
	1.31605																								
	1.304507																								
	1.431392																								
	1.284636 1.284032																								
	1.284118																								
	1.33537																								
	1.341968																								
	1.278524																								
	1.439226																								31.0134
1.132237	1.183461	1.375793	1.529118	1.864786	2.106385	2.253073	2.632785	3.106951	3.837487	4.401272	4.979679	5.301297	5.717888	6.77879	7.521293	8.747846	9.283593	10.31386	12.69621	13.99341	17.57956	19.03379	22.17248	26.49925	30.27856
1.132237	1.341968	1.672366	2.015404	2.435783	2.975216	3.219645	3.607863	3.817162	4.185199	4.515965	3.862601	4.513443	5.82366	6.849034	8.293264	9.323551	10.70347	11.83574	14.44247	15.93305	17.5537	20.45298	23.10923	26.20231	29.22186
1.132237	1.285025	1.446735	1.596054	1.80498	2.202869	2.540121	3.154581	3.756746	4.344913	5.143215	6.335489	8.185688	9.895445	11.07184	13.91713	17.02086	21.07907	23.23975	29.6235	28.58978	32.69285	21.31972	23.50505	27.95285	28.51385
1.132237	1.44036	1.659894	1.944695	2.263253	2.52113	1.780242	2.230144	2.851577	3.403259	3.573249	3.972362	4.525254	5.035312	5.873285	7.019004	8.313303	10.29991	11.72266	13.82227	15.19592	16.81723	19.44297	22.34308	25.16841	27.14276
1.132237	1.44036	1.841709	2.537253	3.112956	3.220957	2.345382	2.869227	3.143605	3.405478	4.649724	5.605032	6.18133	7.671212	5.77886	7.395638	8.288531	9.504913	10.77456	11.84904	15.5801	15.84047	17.62959	21.58205	24.72838	26.62348
	1.325244					2.455197																			
	1.269256																								
	1.431751																								
	1.387938																								
	1.364418																								
	1.269256																								
	1.321428																								
	0.870188																								
	1.326973																								
	1.302596																		_						
	1.400872																								
1.132237	1.345951	1.869185	2.206449	2.750114	3.375572	3.779274	4.079897	4.734666	5.676697	6.099559	6.457083	7.237818	8.317727	9.809723	10.67942	11.9258	8.759034	11.41923	12.93894	15.63695	17.16609	20.16053	21.75519	14.71493	19.88696
1.132237	1.415251	1.740433	1.879302	2.012435	2.258667	2.445338	2.595326	3.238459	3.633944	4.341924	4.835142	5.374423	5.530617	6.202152	6.865129	7.64531	7.653027	9.965584	10.82783	10.4515	11.84748	13.79318	17.19131	20.05388	19.48656
1.132237	1.249104	1.383422	1.674399	1.800144	1.93242	2.476844	2.821938	3.310383	3.877701	3.375866	3.866376	4.211878	4.568561	3.97165	4.698823	3.288258	4.07906	4.944056	5.742186	6.385597	8.184215	9.265986	10.8531	14.1404	19.1141
1.132237	1.306125	1.456414	1.825618	2.046413	2.413833	2.660922	3.009886	3.763382	4.988106	5.634128	6.195479	4.398344	4.921933	5.96475	7.537846	8.344217	8.79518	10.20038	12.6658	14.11955	16.74143	18.37288	21.25465	21.69906	18.63924
	1.251389																								
	1.326689																								
	1.326492																								16.5748
	1.462273																								
	1.302596 1.392015																								
	1.404169																								
	1.495144																								
	1.257307																								
	1.256059																								
	1.448027																								
	1.312519																								
	1.251205																								
	1.404169																								
1.132237	1.363785	1.626654	1.758506	2.174972	2.457779	2.686293	2.988062	3.558991	4.425064	4.883326	6.567611	4.95433	3.797745	4.210674	4.601937	5.055374	5.910932	7.180196	7.483161	5.092454	6.282277	6.781774	7.617156	8.552522	10.1279
1.132237	1.312519	1.618174	1.993356	2.240802	1.619037	1.97041	2.241372	2.79486	2.140635	2.408627	2.674387	1.783285	2.044083	2.642338	3.225847	3.266259	2.816983	2.438656	2.86854	3.438854	4.545398	5.619111	6.230569	7.375331	8.759882
	1.369679																								
1.132237	1.238563	1.418724	1.695929	1.228029	1.440335	1.591032	1.855305	2.089475	2.301918	2.612244	2.895268	1.993291	1.424021	1.126483	1.388958	1.596593	1.930219	2.346462	2.738551	2.371997	2.662974	2.982804	2.581872	2.907473	3.283333

Key takeaway: Overall positive outcomes with less volatility than 100% Stocks.

60/40 Stocks/Bonds

	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65
																									56.07099	
							2.599241																		49.60722	
							2.506704																		45.10539	
																									44.09894	
																									41.87472	
																									37.85847 41.22121	
																									31.86384	
																									42.97016	
																									30.22633	
																									32.65043	
																									32.09551	
																									31.73491	
1.1322	237 1	.380896	1.161994	1.499611	1.809403	2.113296	2.464498	2.545539	3.224571	4.31871	4.096305	5.020039	5.529499	5.210393	6.108041	7.688438	8.939849	12.11034	12.78035	14.98679	17.62834	19.69956	23.01975	26.55292	27.94781	33.29045
1.1322	237 1	.346929	1.534613	1.972816	2.297942	2.763349	3.317007	3.814592	4.501502	5.370206	6.395818	7.512855	8.013574	9.041785	10.5732	11.25624	9.86879	11.9292	13.99423	17.59617	20.06329	23.58424	29.18611	26.82293	27.56515	31.88053
1.1322	237	1.37132	1.663778	2.014209	2.238322	2.681677	2.518119	2.895023	2.743704	2.870776	3.607482	4.71687	5.591713	5.344339	6.438574	7.512894	9.542729	8.009676	9.4578	11.54471	12.92493	15.28318	17.1776	19.8044	25.70198	30.95441
1.1322	237 (.970554	1.359005	1.618283	1.978478	2.458559	2.74699	3.187543	3.779119	4.169757	4.980182	6.466762	7.037145	8.251006	9.556897	10.59781	12.89639	16.37319	18.29792	21.08481	16.83869	22.69024	24.05608	23.97121	29.32976	30.10089
1.1322	237 1	.341626	1.692268	1.970885	2.295746	2.815928	3.213721	3.840326	3.870212	4.331952	4.820473	5.911142	6.798197	7.782114	9.31575	10.98374	13.60484	15.33418	17.75377	19.50004	23.49684	18.1461	20.89473	22.21983	26.29646	29.40816
1.1322	237 1	.324836	1.622916	2.004004	2.462042	2.703909	2.570468	2.652289	3.237809	3.765751	4.905124	5.456159	6.415755	8.707046	10.06473	10.71812	12.3632	13.7171	15.04801	16.19885	17.45992	19.01762	22.30132	24.02225	26.36681	28.80266
1.1322	237 1	.211187	1.490574	1.793416	2.10752	2.286509	2.646115	2.576625	2.982892	3.019563	3.716345	4.051512	5.175433	6.614577	7.803331	9.400348	10.61624	14.30896	15.63236	18.61601	20.5584	23.92237	22.33486	24.74458	29.54488	28.28525
																									24.20612	
																									21.09482	
																									24.84154	
																									20.18613	
																									22.4771	
																									25.29078 20.52451	
																									19.97234	
																									26.03986	
																									23.4399	
																									26.57153	
																									18.17406	
1.1322	237 1	.508557	1.933961	2.078466	1.949023	2.368922	1.929927	2.233893	2.694798	3.057878	3.963288	5.028048	6.068696	7.148972	7.163925	9.125244	10.69834	10.6232	10.97947	10.31591	12.09901	13.61313	15.65686	15.01112	18.28545	20.4441
1.1322	237 1	.096821	1.295519	1.276622	1.467452	1.675833	1.860226	2.509042	2.999268	3.607565	4.230468	4.616085	5.455917	6.149683	7.187763	6.919266	8.2742	9.612419	10.99172	8.947703	10.13617	11.77097	12.26652	14.26287	16.62553	20.09737
1.1322	237 1	.300224	1.262598	1.429095	1.610016	1.883881	2.168751	1.944463	2.067019	2.414629	3.043014	3.756707	4.408198	5.626281	6.405348	7.642171	9.209126	9.980854	11.64986	12.38343	13.15979	14.9026	17.1324	17.66193	21.46355	19.7497
1.1322	237 1	.560144	1.815411	2.030956	2.37898	2.610658	3.113974	2.917051	3.390031	4.246992	5.297868	6.098296	7.779832	8.761476	9.517152	9.176381	10.0241	11.14026	11.76217	13.26468	16.13455	14.12379	17.03025	19.95408	18.3095	19.03165
1.1322	237 1	.357812	1.121862	1.536479	1.628562	1.845789	1.886737	2.092644	2.442498	2.63334	2.927054	3.524683	3.846223	4.134339	4.893266	5.767837	6.277356	7.666439	9.589278	10.81507	12.26799	15.50902	14.85349	16.33709	19.10975	18.28967
																									22.98548	
																									21.74316	
																									15.8336	
							2.696383																			
							2.695557																		14.07705	
																									13.49776	
																									12.37133	
																									12.34102 11.46513	
																									13.14758	
							2.026056																		10.94286	
																									10.60115	
			1.374065																						7.291165	
																									3.997705	
2.232			2.50.,25	2.000332	2,,33033	1.577.50	2,023037	2,300023	2.30331	2.020.30	2.333,30	2.33, .37	2.023		2,3,2372	5.000224		2.033730	2.330023		5.272.10	2.203.33	J.D.I.	2.7 10000	2.5555	

Key takeaway: Overall success but with some volatility later in the horizon.

55/35/10 Stocks/Bonds/RE Blend

40		42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65
	1.238567																								
	1.320765																								53.1814
	1.386306																								
	1.300224																								
	1.218069																								
	1.380263																								
	1.310927																								
1.132237																								29.38428	
1.132237																								26.17997	
	1.29382																								
	1.436669																								
1.132237	1.388756	1.630919	2.049421	2.285142	2.587525	2.923496	2.974744	3.316729	4.158421	4.05661	3.870974	4.509804	5.506319	6.144177	7.037663	7.783859	8.564882	9.489509	11.24712	13.43156	16.41636	18.23826	22.86658	27.91975	30.90101
	1.393911																							26,4129	
1.132237	1.464468	1.375109	1.565601	1.816473	2.248631	2.588561	2.915819	3.580444	3.998955	4.531196	5.273794	6.590342	7.454603	8.678504	9.835199	12.21545	15.54309	16.05586	18.32464	16.94078	16.87606	22.29006	26.48263	30.24579	29.30887
1.132237	1.230612	1.488085	1.65205	2.020425	2.332061	2.673195	2.595929	3.559965	4.394258	5.363052	6.493272	7.684969	9.556607	7.675759	7.447621	8.611664	11.44647	13.40754	15.80861	16.34261	17.92637	20.60367	23.77004	27.64408	28.53199
1.132237	1.318048	1.478424	1.604126	1.721799	2.25835	2.293092	2.629613	3.056527	3.622379	3.907943	4.219214	5.204887	6.160155	5.758321	6.985724	7.837193	7.717516	8.987405	10.69933	12.42018	14.49126	16.99097	20.12249	23.50432	27.86862
1.132237	1.415678	1.778213	2.062058	2.430373	1.982883	2.415656	2.970653	3.867476	4.498627	5.105798	6.372759	7.038042	7.964885	8.783467	10.90652	13.39143	15.96546	19.03429	22.22988	27.57669	31.68912	24.35658	25.4503	29.28159	27.53514
1.132237	1.365284	1.458956	1.823228	2.075761	2.404	1.962441	2.362345	2.603455	2.596934	3.135367	3.492792	4.099131	3.73865	3.447893	3.785701	4.621512	5.976995	7.969926	10.3875	13.7495	15.62924	17.98764	22.29639	22.96987	26.87298
1.132237	1.367753	1.549081	1.814245	2.05004	2.406719	2.83221	3.520919	4.128066	4.875413	5.853385	6.877383	8.168535	9.370101	8.971781	9.48392	11.01218	12.56612	10.08077	11.7911	12.99724	14.77835	17.10799	19.3893	22.46101	26.23836
1.132237	1.476676	1.881223	2.355027	2.231592	2.669894	2.633455	2.636129	3.255271	3.853888	4.480313	4.710551	5.813242	7.431339	8.106184	10.11488	9.549495	11.61625	11.88806	13.4314	14.17208	16.42794	17.53157	20.05806	21.9889	25.43568
1.132237	1.370718	1.369696	1.48143	1.559123	1.880754	2.213908	2.523898	2.649291	3.036422	3.329129	3.724841	4.362988	4.650507	5.553255	6.475367	7.577564	9.714931	7.504602	9.820234	12.92223	14.90353	16.80836	19.66535	20.83935	24.7492
1.132237	1.346831	1.502047	1.668725	1.76807	1.983653	2.125316	2.733016	3.341528	3.674169	4.353764	4.870325	5.393166	6.849156	8.529313	9.376133	8.696122	10.32959	11.91491	13.08191	14.77525	17.42937	19.63216	20.52833	23.07624	24.34543
	1.487081																								
	1.328224																								
	1.352895																		_						
	1.303608																								
	1.264325																								-
	1.350742																								
	1.374274																								-
	1.349963																								
	1.390831																								
	1.448712																							15.05677	
	1.067558																								
	1.454387																								
	1.40176																								
	1.086957																								
	1.361272																								
	1.347984																								
	1.307579																								
	1.336942																								
	1.168584																								
1.132237	1.272443	1.031869	1.251782	1.395234	1.69395	1.674307	1.893487	2.48772	2.393601	2.62641	2.920994	3.277018	3.463019	4.216353	5.200686	5.643136	5.941151	6.962173	8.2231	7.67428	9.881283	11.47139	12.20537	11.1305	12.84405
1.132237	1.36305	1.621712	1.836748	2.174804	2.358729	1.881686	2.257592	2.668187	2.672592	2.47758	1.978843	2.276921	2.760101	2.988422	3.495842	4.003931	5.480035	6.385738	7.395795	8.075946	9.339593	10.47523	9.47703	10.36214	11.70872
1.132237	1.319539	1.320317	1.498224	1.862641	2.084366	2.536305	3.184026	3.995986	3.918327	3.825525	4.273066	4.601766	5.144403	6.037626	4.86483	5.373573	4.348957	4.948453	5.893618	6.797316	7.990173	9.417112	9.089717	9.325869	10.71095
1.132237	1.260653	1.424597	1.520302	2.083025	2.240887	2.531087	2.043636	2.258665	2.823199	2.614	3.387626	3.937209	3.90527	4.128239	3.166306	3.117189	3.703679	4.333016	4.246663	4.658759	5.91343	7.377046	8.209239	9.014223	9.783504
1.132237	1.330699	1.699778	2.073928	2.650978	3.090952	3.025064	3.548933	4.046984	3.099091	2.94068	3.457075	4.239987	5.007613	5.746982	4.589174	5.599346	7.114036	7.450199	5.937616	5.808558	6.070653	6.778458	7.240823	6.946874	7.657137
1.132237	1.238567	1.250132	0.984565	1.360019	1.51677	1.766192	1.420821	1.672616	1.880717	1.875119	1.989563	2.198622	2.473413	2.840065	2.793361	2.938287	2.400141	2.606245	3.002208	3.431573	3.849708	3.137677	3.947442	3.809644	4.164133

Key takeaway: Similar outcomes to 60/40 but with a smoother transition to success.

T Rowe Price Glidepath

	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65
																									90.41159	
																									80.22529	
																									57.82717	
																									59.20928	
																									51.80705	
																									46.70025	
-																									48.70926	
																									43.86545	
																									41.9251	
-																									39.47458	
																									37.40056 32.56188	
																									34.64212	
																									35.77033	
-		1.30219					2.602342																		30.18124	
		0.996667																							29.62192	
																									29.24147	
-																									32.67458	
																									28.11434	
																									27.17416	
-		1.150257																							26.37024	
																									28.0744	
1.132	237	1.318765	1.70952	1.514705	1.802194	2.03778	2.512524	2.805995	3.219253	3.719117	4.468319	5.571136	7.275419	8.521246	6.224613	6.945946	7.665592	7.887124	9.564023	10.20187	12.20116	13.8362	15.64076	18.96634	23.23299	29.94398
1.132	237	1.429339	0.986165	1.41985	1.536006	1.88649	1.950997	2.659318	3.081791	3.676795	3.271617	3.752254	4.312122	5.00675	5.836518	6.155094	6.894742	7.66041	8.328259	10.92029	12.19236	15.61772	19.52407	21.81133	24.47384	29.38614
1.132	237	1.403189	1.911584	1.346651	1.292842	1.66063	2.233863	2.616538	2.404822	2.372954	2.814953	3.321364	3.908538	5.094831	5.944164	6.917773	7.807199	8.867299	9.633266	12.263	14.57755	18.56368	23.1327	22.39881	24.58112	28.56943
1.132	237	1.398075	1.449707	2.068784	2.757479	3.383574	4.117695	4.738991	4.476226	6.079319	7.956856	9.692178	9.138167	10.42499	13.20297	15.393	15.28858	19.07923	22.50016	24.45457	28.09227	22.5704	25.99107	23.03413	23.86754	27.65959
1.132	237	1.346758	1.802768	2.139428	1.983713	1.868706	2.48393	2.364775	2.762205	3.520808	4.856125	5.646318	6.848021	7.500546	8.358297	9.017433	10.78157	12.91259	12.36576	15.35841	18.38507	22.47716	28.54287	22.42245	22.76452	27.04098
1.132	237	1.327402	1.505561	1.375124	1.788481	1.881592	2.316059	2.740525	2.939361	3.523108	4.285698	5.612326	5.186721	5.871218	6.025087	6.795528	7.683557	9.684231	12.50904	13.97109	16.24505	18.91183	22.83057	24.83207	23.67311	26.52589
1.132	237	1.30432	1.87232	1.690692	1.594634	2.207814	2.866448	3.311173	3.810156	5.374869	6.352801	6.901322	7.587233	10.2666	12.8329	11.44428	12.67013	14.48522	15.90966	18.91743	19.33804	18.30235	20.58868	23.80775	27.29502	25.72213
1.132	237	1.399234	1.758898	2.085877	2.424537	3.308642	3.896842	4.231215	4.688429	5.495205	6.392454	7.000744	7.16065	8.328281	11.19533	11.46136	12.33952	10.84207	11.61767	12.97546	15.29443	15.86906	19.19893	21.29356	23.86119	24.68208
1.132	237	1.131799	1.404566	1.650186	1.685638	2.020258	2.220623	2.907813	3.195738	3.70919	3.684797	3.768085	3.990347	5.67279	6.218148	7.604425	7.125871	9.498856	10.98514	12.80062	15.31119	16.15889	20.42248	18.40323	24.68677	23.89179
																	11.88763								22.45901	
1.132	237	1.280705	1.738883	2.192255	2.731659	3.300461	3.615724	4.015132	4.436715	4.882681	4.475243	5.823467	6.462799	7.060028	8.918122	11.34267	12.91671	11.77378	15.37965	16.58055	19.54502	22.47115	26.24338	21.35426	19.73604	22.44829
																									23.05034	
																									21.47202	
																									18.42186	
-							2.917537										7.582837								17.04939	
																									16.93261	
																					_				19.8149	
																									16.47903	
																									16.58737 13.97878	
							2.333044																		13.52568 14.11147	
																	14.12629								15.91543	
																	6.962386								13.42588	
-																	12.75818								11.29432	
																	5,977486								9.858154	
																									9.672253	
																									7.431044	
																									6.897012	
2,232		2,30.52	2.3333-10	3.30321	2.20,333	1.55.51	2.0.3332	_,,	L.12-111	2.303324	3.00.07	2,302,73	2.02.1300		3.3.012		2.302013	2.101010	2.47.52.52			2.003333	2.52.075	5.1105/0	2.03,012	2.303300

Key takeaway: Good outcomes with some volatile paths due to higher equity weights.

T Rowe Price Glidepath with Real Estate Blend

40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65
1.132237	1.553473	2.078089	2.664467	3.30168	4.408318	5.611461	7.703292	9.025662	9.734843	13.21353	17.11227	15.60147	14.2932	16.88777	21.6129	24.89042	31.30396	37.30691	49.19393	57.44996	59.03874	68.03662	77.21184	90.57912	101.8218
	1.353217																								
	1.254917																								
	1.248949																								
	1.314938																								
	1.345291																								
	1.403979																								
						3.431019																			
	1.534921																								
	1.377337																								
	1.471211																								
	1.496129																								
1.132237	1.270664	1.596985	1.456071	1.727985	2.141597	2.613187	2.940244	3.741042	4.090104	4.856362	6.173387	8.024438	9.260382	8.673922	11.31855	10.03956	13.64637	15.56941	19.35924	22.55049	26.77015	31.28428	37.78332	37.08627	40.18607
1.132237	1.168993	1.382594	1.629842	2.024466	2.348148	2.784544	3.264582	4.497475	5.630115	6.547866	7.796303	6.035375	6.557268	7.742935	7.121523	7.790697	9.891278	13.06946	15.1604	17.61726	20.30132	24.78483	27.82627	34.30604	38.69332
1.132237	1.388234	1.987747	2.431378	2.508886	2.934446	3.291627	3.931535	4.879097	5.916472	6.759479	8.263146	9.914248	10.68607	9.605113	12.57308	15.56266	17.02485	19.89276	22.606	24.16096	25.20405	24.62886	26.64885	33.71001	37.75208
1.132237	1.508514	1.948566	2.628337	2.336315	2.862623	3.193953	3.832344	4.269717	5.098265	5.83491	7.293351	7.473886	9.817449	7.467462	9.557495	12.23504	15.19062	19.2886	22.72955	25.32751	30.12945	34.79785	29.70696	32.83461	36.45804
1.132237	1.306779	1.656464	2.023538	1.85021	2.281058	2.760318	3.193285	3.663329	3.577019	5.000567	6.98989	8.103107	9.428148	11.75918	12.57937	13.25813	14.35338	17.27648	19.59636	20.63296	25.14739	27.78946	30.20504	33.12285	35.68069
1.132237	1.002998	1.332624	1.524542	2.288513	2.566041	2.183192	2.492815	2.933835	3.457978	4.225528	5.099785	6.607768	9.102472	9.993687	10.41818	11.46252	10.93009	13.49196	14.88107	15.68549	18.24066	21.1034	23.83057	27.34953	34.51842
	1.398192																								
	1.305309																								
	1.471211																								
	1.080157																_								
	1.379206																								
	1.351177																								
	1.11508 1.434028																								
	1.434028																								
	1.359125																								
	1.169682																								
	1.390665																								
	1.359125																								
	1.244014																								
1.132237	1.233161	1.426054	1.285297	1.46046	1.984726	1.887805	2.217585	2.864536	3.495584	4.324667	4.816707	5.69608	6.448587	6.118912	4.517631	5.874194	6.654941	8.616537	9.414687	10.02449	11.86275	16.0813	17.42723	17.9576	22.37333
1.132237	1.344439	1.253966	1.762017	2.152719	1.989492	2.3655	2.802893	2.085303	2.502346	2.6722	3.378657	3.68869	5.105264	7.434317	8.222344	9.302335	10.65386	13.07339	10.52026	12.79418	13.9068	15.43307	17.48126	18.07302	21.53065
1.132237	1.361029	2.157401	2.776209	3.324701	4.075364	4.980943	6.440577	9.329014	10.87698	12.04557	14.06528	9.885393	11.3647	12.0216	9.446985	11.96221	13.20998	12.52374	11.21102	12.27413	14.50746	16.70856	18.36891	17.41369	20.61152
1.132237	1.391942	1.319935	1.490108	1.809481	2.179641	2.518191	3.152625	3.597627	4.593553	5.812869	5.416264	6.617121	8.430416	7.788772	10.20247	9.499791	11.57654	12.21896	9.369192	10.26998	12.91816	14.83842	16.21246	16.9678	19.96185
1.132237	1.492802	1.857014	2.639326	3.163646	2.373859	2.413847	3.04795	3.92872	2.946764	3.396394	3.961845	4.692803	5.201064	5.785803	6.689182	7.974356	8.758034	6.576602	7.466368	8.281109	9.883142	11.43746	11.91015	15.50631	19.20498
1.132237	1.344439	1.638119	2.155836	2.379944	2.949143	3.514267	4.670973	4.28229	4.673229	5.491694	5.956978	6.654109	7.216939	7.828432	8.396778	9.287759	8.596418	10.40795	11.7003	11.49496	12.0109	12.95417	14.71977	16.40562	18.83971
1.132237	1.3629	1.599379	1.647122	2.229049	1.520811	1.484727	1.942811	2.225769	2.516223	2.384636	3.446905	4.376863	4.928639	6.003746	7.090881	8.064686	7.848083	8.092909	8.925816	10.75617	12.33144	11.40334	13.00903	14.3787	18.14527
	1.12544																							14.94085	
	1.168749																								
7 7	1.255893																								
	1.169682																							14.95767	
	1.454148																								
	1.239093																								
	1.363693																						9.906132		
	1.35814																								
	1.31014																								
	1.169649																								
1.132237	1.103043	1.200034	1.330222	1.070071	2.202434	2.433133	3.0017	3.302311	4.541503	3.313240	4.130002	3.300000	3.10321	J.72//30	2.501515	3.12373	3.030444	3.323071	3.737030	4.230000	4.72404	3.020004	4.1/500	3.30442	0.317743

Key takeaway: Smoother transition to success as with other strategies that include the real estate blend.

MarketGlide Benchmark Glidepath

40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65
							5.607673				_														
							4.011838																	69.51781	
	1.337192						3.879334																		
							4.198464 2.996854																	47.47235	
							3.011402																		
							4.898856																	38.20034	
							4.318449																		
							2.615203																		
							5.118882																		
1.132237	1.436773	1.687144	2.132198	1.952394	2.157607	1.641538	2.314069	2.819792	3.403643	4.661719	5.837055	6.854782	7.893722	7.375484	8.756138	8.988602	10.50469	12.38314	16.10167	21.58866	24.69081	27.86923	30.8933	34.77559	38.10551
1.132237	1.379221	1.860938	2.097983	3.210068	3.649733	4.209343	4.308229	4.067108	5.201483	6.115812	7.173024	6.689621	7.648122	9.613075	11.61632	13.7369	15.80097	16.65787	18.97405	23.16422	23.59727	24.55588	27.24846	31.93932	36.30281
1.132237	1.062703	1.549265	1.873724	2.4954	3.347217	4.029644	4.678337	5.929084	5.491098	5.069938	5.491255	6.362725	7.074324	7.777343	9.259816	10.84803	13.19267	15.19257	17.75059	21.20819	23.63524	24.2007	27.85439	31.90556	35.06648
1.132237	1.481498	1.806193	2.157074	2.713755	3.858822	4.696395	5.194627	6.425741	7.393076	7.996793	8.779766	9.963309	11.18394	10.59886	13.62128	14.67777	16.48795	19.91308	21.90795	23.50969	19.51436	23.88226	26.30547	28.99614	33.35367
1.132237	1.209935	1.592059	1.433677	1.97504	2.743611	3.352827	4.18518	5.067203	6.940108	8.079934	9.488343	10.96411	13.14799	14.82761	15.80068	18.32334	14.95468	16.07135	16.61013	18.86906	22.99802	22.52315	25.21829	28.55082	32.416
							3.094304																		
							3.27967																		
							2.334242																		
							2.59781																		
							3.402896																		
							4.488933 2.703001																		
1.132237							4.379256																		26.4758
							3.648834																		
							3.93457																		
							4.248923																		
1.132237	1.275726	1.324985	1.755917	1.877595	1.415295	1.929472	2.295393	2.657262	3.24189	3.105509	3.723427	4.738057	5.740864	5.970463	7.124731	8.183744	9.693292	11.10155	12.59173	14.07196	14.67792	17.82973	21.37797	23.95342	24.1092
1.132237	1.302848	1.535425	1.642188	2.040718	2.710307	3.326313	3.704139	4.610085	5.545893	6.200882	7.098762	7.48751	6.804284	7.571327	8.583666	10.10152	11.20894	14.57172	16.23246	17.18142	19.10142	23.64135	26.17864	22.75566	23.80293
1.132237	1.361319	1.790327	2.091339	2.44657	2.416013	2.898039	3.479519	3.796407	4.053761	4.625508	4.429089	5.679539	6.870798	8.29919	7.92727	9.069559	10.01276	9.526995	11.49129	14.17541	16.25796	18.64193	20.64268	22.27025	23.32078
1.132237	1.345604	1.654786	2.260023	2.618063	3.649049	4.248787	4.202196	5.01502	5.828246	6.856965	7.340527	9.198725	8.67732	10.09905	9.754626	11.37822	13.70618	14.50693	13.80835	13.53451	15.63122	18.86561	17.95581	21.11273	22.99654
							2.4795																		
1.132237							2.618681																		
							4.770244																		
							3.321342 5.32356																	19.42446	
							3.963456														10.14876				19.72005
							2.718511																		13.3320
							2.896604																		18.553
							2.868402					5.94838													18.03718
1.132237	1.278388	1.481947	1.784055	2.356318	2.659696	3.214304	2.762751	2.600488	3.186126	4.169839	5.087256	4.796988	5.463767	6.353577	7.303566	5.771511	6.558157	8.310388	9.359786	10.72343	11.58144	13.04135	13.70276	15.96938	17.40638
1.132237	1.358964	1.627847	1.803757	2.11688	1.60689	1.598255	1.913784	2.379376	2.201593	2.101105	2.658853	3.236694	3.73413	4.384896	5.247114	6.258352	8.271036	9.454461	7.560979	8.577036	10.66206	12.27003	13.83064	16.25261	16.93598
1.132237	1.343514	1.714144	1.8061	2.029053	2.475453	3.197852	3.894925	4.838802	4.499244	5.184214	5.799172	5.975646	7.53149	7.26697	8.097328	10.44362	10.81184	11.49426	13.65629	11.24837	12.64989	11.83633	12.78611	14.20313	16.1589
1.132237	1.310496	1.497918	1.710209	2.163679	2.234338	2.230664	2.602711	2.436477	2.912722	3.562284	4.806213	6.096551	6.250508	5.959275	7.786524	9.306291	10.14832	10.53625	10.88834	12.46205	12.2524	10.44968	13.28834	14.1444	15.02166
1.132237	1.330337	1.554525	1.935849	2.363716	2.352707	1.960255	2.218079	3.073553	3.66399	4.28497	4.72628	5.652717	7.413399	7.96211	9.446225	9.691805	7.760834	7.951723	6.541097	8.418515	9.218961	11.70964	13.2175	14.50595	14.49301
							1.961521																		
							5.054619																	12.17803	
							2.748931																	10.8759	
	1.350396						2.056461																		
							2.119274																		
							2.78423 1.304562																		
1.132237	1.454964	1.915951	1.700003	2.130336	1.9544/1	1.759268	1.304362	1.121616	1.3/102/	1.002964	1.794155	2.150329	2.040060	5.493515	2.702321	5.040216	3.20044	2.0000001	2.93/946	3.019/3	3.93200/	4.042016	4.0/0931	3.546738	0.541095

Key takeaway: Lower risk version of the T Rowe Price glidepath with similar success.

MarketGlide Benchmark Glidepath with Real Estate Blend

40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65
1.132237	1.455567	2.099057	2.553187	3.544189	4.104862	5.3742	7.329437	9.063037	10.57335	10.86699	11.73848	12.77841	15.21453	20.8081	24.31069	30.09221	37.89785	41.55776	49.23895	56.10824	63.66306	63.58152	72.78815	81.42356	83.40542
	1.34859																								
	1.242393																								
	1.297359																								
	1.382752																							38.17836	
	1.287587																							34.31159	
	1.354177																								
	1.269045																								
	1.315315																								
	1.454484																								
	1.378884																								
	1.212842																								
	1.471177																								
1.132237	1.185703	1.497446	1.822053	2.482082	2.852345	3.294618	3.979922	4.398067	5.051594	3.972595	4.411226	4.849568	6.426337	7.456976	7.718736	9.090974	11.11624	12.80338	14.64338	17.11236	19.89488	21.57395	23.2796	30.08377	32.30678
1.132237	1.303565	1.635855	2.040826	2.162662	2.528224	2.944025	3.673301	4.222481	5.355472	5.619318	5.781281	6.652618	8.12195	6.162301	7.364149	8.519458	10.32687	12.43159	14.20487	18.34177	21.05033	23.03642	26.28263	28.40192	31.28616
1.132237	1.336066	1.888857	1.727015	2.004857	2.683203	3.647162	3.344377	3.726751	4.500762	5.939265	6.292683	7.162891	7.928999	9.480345	10.31566	12.27923	14.50749	16.65127	18.65788	17.64021	20.41421	24.05864	28.17692	31.64269	30.69674
1.132237	1.162775	1.087989	1.311654	1.603119	1.966468	2.16866	2.60605	3.305014	3.696567	4.015467	4.376425	5.184245	6.201426	7.570103	7.444731	10.12121	11.88558	12.98398	14.93146	14.17188	16.07891	19.70446	21.80332	23.88532	29.84607
1.132237	1.340953	1.639244	1.580942	2.065859	2.24701	2.811335	3.482226	4.588413	4.989751	5.392648	6.327276	7.046687	7.519168	8.830104	9.852789	7.73103	9.833897	11.12052	11.97038	13.39724	15.86428	19.88147	23.23662	24.21858	29.46236
1.132237	1.340841	1.55677	1.758677	1.601652	1.999105	2.834651	2.309275	2.539771	2.413159	2.729707	2.8973	3.648286	4.325132	5.456628	6.076418	7.238581	9.371649	10.2809	11.92413	14.78089	18.50404	20.5076	22.68879	25.41005	28.87036
1.132237	1.263695	1.039626	1.243735	1.554567	1.911133	2.109562	2.780168	3.530003	4.329901	5.574652	6.756574	7.992995	9.297132	10.66982	9.875999	11.92079	13.74243	14.53572	17.09995	19.45571	20.21393	23.20497	23.05153	26.09368	28.26254
1.132237	1.312199	1.605148	1.242393	1.683832	2.214417	1.547042	1.866715	2.196468	2.5958	3.297414	3.568514	4.771734	6.169434	7.143492	8.364137	9.624236	10.38572	11.86056	14.20652	17.36874	17.8933	18.63592	20.73975	24.4103	27.69107
1.132237	1.445064	1.317929	1.584796	2.104923	2.577526	2.332657	2.731787	3.177928	4.032471	4.603876	5.279742	6.138013	7.584629	7.970793	9.343544	8.930064	9.545953	11.10784	13.23996	17.70591	18.47362	19.76573	22.48779	24.09157	27.32992
1.132237	1.274373																								
1.132237																12.66641									
	1.33158																								
	1.401431																								
	1.092418																								
	1.353218																								
	1.364652																								
	1.340953																								
	1.247539																		_						
	1.489817																								
	1.318494																								
	1.333096																								
	1.305316																								
1.132237	1.380122	1.298583	1.561009	1.18298	1.242774	1.625087	1.900664	2.302591	2.456339	2.837251	3.393417	3.760953	4.65396	5.61599	6.502318	5.962552	6.830311	6.345866	7.167718	7.964984	9.882954	10.78743	13.7161	15.14485	18.40396
1.132237																7.035364							15.94334	17.46332	17.86631
1.132237	1.216508	1.596468	1.167566	1.51619	1.91385	2.313582	2.689772	2.579723	3.25079	3.045638	3.668262	4.037405	4.726262	3.666238	4.185287	5.056271	5.885682	6.799353	7.261221	8.579892	9.713985	12.39429	13.4305	14.90202	17.24634
1.132237	1.237647	1.089359	1.33736	1.272398	1.206644	1.612221	1.942878	1.841883	2.208256	3.089095	3.849528	4.308121	4.726081	5.390562	6.406308	7.538143	8.394746	10.99731	11.909	11.99957	12.79489	14.67508	16.52799	16.59214	16.95674
1.132237	1.335274	1.770702	2.165594	2.561438	2.380636	2.207059	2.559606	3.592184	3.98517	5.018996	6.242153	5.798818	4.489331	5.161251	6.337124	7.297359	9.064368	10.51654	12.31191	13.45795	13.26044	13.6361	15.40653	14.87626	16.31597
1.132237	1.198585	1.584989	1.801073	1.712434	2.097208	1.580576	1.841624	2.247898	1.739266	1.536331	1.870562	2.072669	2.267438	2.762476	3.421788	4.072896	4.656223	5.483657	6.272139	7.054918	8.872821	10.08911	12.34163	12.66367	15.24242
1.132237	1.355143	1.575051	2.075919	2.276865	1.658409	1.951024	2.281591	2.21088	2.602423	2.91759	2.564316	3.257728	3.98069	4.93266	5.701115	6.53622	7.011899	8.375744	6.903252	7.664237	8.369198	9.727601	10.71562	12.96579	14.83851
	1.335608																								
	1.325186																							10.7595	
	1.32696																								
	1.324172																								
	1.29103																								
	1.34426																								
1.132237	1.162775	1.070782	0.8177	0.955404	0.705079	0.886931	1.217251	1.394481	1.344707	1.629961	2.062324	1.638483	1.95215	2.316033	2.572374	2.793203	3.00886	3.681558	2.96131	3.497029	3.526324	4.193467	4.45663	5.021797	5.428939

Key takeaway: Smoother version of the MarketGlide Benchmark glidepath because of the effects of increased diversification.

8 | CONTACT DETAILS 44

Defined Contribution Real Estate Council (DCREC)
38 E. Ridgewood Avenue, Suite 229
Ridgewood, NJ 07450
+1 201.445.7007
contact@dcrec.org
www.dcrec.org

© Defined Contribution Real Estate Council 2014.

Author Statement and Acknowledgements

This research was supported by DCREC. The authors greatly benefited in this work by discussions with: David Skinner (Co-President, DCREC); Jason Frederick and Ian Matthew (Co-Chairs, DCREC Research & Content Committee) and Committee Members; and Mary Adams (DCREC Executive Director). The views expressed herein are those of the authors and are not necessarily those of DCREC.

